DOI QR코드

DOI QR Code

Effect of maternal gene expression on porcine oocytes in vitro maturation

돼지 미성숙 난자 모계 유전자 발현이 체외성숙에 미치는 영향

  • 이재달 (혜전대학교 애완동물관리과)
  • Received : 2012.05.30
  • Accepted : 2012.08.09
  • Published : 2012.08.31

Abstract

Understanding of the maternal transcriptome increased to elucidate the underlying molecular mechanism of normal oocyte maturation, which depends on a precise sequence of changes in maternal genes expression. Previous reports that the translational potential of a maternal mRNA is generally determined by the length of the poly(A) tail, and deadenylation is usually the first sign of mRNA degradation. However, in vitro cultured system has the underlying molecular mechanisms remain unclear. We determined whether the role of molecular basis, four important maternal genes, C-mos, cyclin-B1 (regulatory subunit of MPF), BMP15 and GDF9, were selected for detection of their precise mRNA expression patterns by real-time PCR and for determination of their polyadenylation status by poly(A) tail PCR during oocyte maturation. In the present study. the abnormal expression of maternal mRNAs prior to zygotic genome activation, which results in suppression of the corresponding protein level, may be responsible for, at least in part, a profound defect in further embryonic development. Reasonable expression of maternal gene is crucial for proper oocyte maturation and further embryonic development.

난자 세포의 정상적인 성숙과정을 이해하려면 모계유래 유전자 발현 증가의 분자 생물학적 기전을 밝혀내야 한다. 이것은 모계 유전자의 염기서열의 변화와 밀접한 관계가 있다. 전 연구결과에 의하면 돼지 난자 체외 성숙과정에서의 모계 유전자 mRNA 발현은 통상적으로 poly(A) 꼬리 길이와 아데닐산 중합반응에 의하여 검증된다. 하지만 포유동물 체외성숙 과정에서는 아직까지 밝혀진 것이 없다. 따라서 본 연구목적은 성숙단계 난모세포에서의 분자생물학적 기전을 해명하고자, 4개의 중요한 모계유전자발현을 real-time PCR기법으로 확인하여 poly(A) 꼬리 길이와 아데닐산중합반응의 변화를 확인하였다. 본 연구에서 접합체 유전자 활성화 단계에서 모계 유전자의 비정상적인 발현과 이것에 상응하는 단백질 수준의 억제는 일부 혹은 대부분 유전자 손실에 의하여 초래된 것임을 알 수 있었다. 따라서 이상적인 모계 유전자 발현은 난자 세포의 성숙 및 더 나가서 초기 배아 발달에 중요한 역할을 하는 것임을 확인 하였다.

Keywords

References

  1. Bettegowda A, Smith G W. Mechanisms of maternal mRNA regulation: implications for mammalian early embryonic development. Front Biosci 12:3713-3726, 2007. https://doi.org/10.2741/2346
  2. Juge F, Zaessinger S, Temme C, Wahle E, Simonelig M. Control of poly(A) polymerase level is essential to cytoplasmic polyadenylation and early development in Drosophila. EMBO J 21:6603-6613, 2002. https://doi.org/10.1093/emboj/cdf633
  3. Hashiba Y, Asada Y, Heikinheimo O, Lanzendorf SE, Mizutani S. Microinjection of antisense c-mos oligonucleotides prevents the progression of meiosis in human and hamster oocytes. Fertil Steril 76:143-147, 2001. https://doi.org/10.1016/S0015-0282(01)01821-0
  4. O'Keefe SJ, Wolfes H, Kiessling AA, Cooper GM. Microinjection of antisense c-mos oligonucleotides prevents meiosis II in the maturing mouse egg. Proc Natl Acad Sci 86:7038-7042, 1989. https://doi.org/10.1073/pnas.86.18.7038
  5. Ohashi S, Naito K, Sugiura K, Iwamori N, Goto S, Naruoka H, Tojo H. Analyses of mitogen-activated protein kinase function in the maturation of porcine oocytes. Biol Reprod 68:604-609, 2003. https://doi.org/10.1095/biolreprod.102.008334
  6. Newman B, Dai Y. Transcription of c-mos protooncogene in the pig involves both tissue-specific promoters and alternative polyadenylation sites. Mol Reprod Dev 44:275-288, 1996. https://doi.org/10.1002/(SICI)1098-2795(199607)44:3<275::AID-MRD1>3.0.CO;2-J
  7. Tay J, Hodgman R, Richter JD. The control of cyclin B1 mRNA translation during mouse oocyte maturation. Dev Biol 221:1-9, 2000. https://doi.org/10.1006/dbio.2000.9669
  8. Tremblay K, Vigneault C, McGraw S, Sirard MA. Expression of cyclin B1 messenger RNA isoforms and initiation of cytoplasmic polyadenylation in the bovine oocyte. Biol Reprod 72: 1037-1044, 2005. https://doi.org/10.1095/biolreprod.104.034793
  9. Juengel JL, Bodensteiner KJ, Heath DA, Hudson NL, Moeller CL, Smith P, Galloway SM, Davis GH, Sawyer HR, McNatty KP. Physiology of GDF9 and BMP15 signalling molecules. Anim Reprod Sci 82-83:447-460, 2004. https://doi.org/10.1016/j.anireprosci.2004.04.021
  10. McNatty KP, Juengel JL, Reader KL, Lun S, Myllymaa S, Lawrence SB, Western A, Meerasahib MF, Mottershead DG, Groome NP, Ritvos O, Laitinen MP. Bone morphogenetic protein 15. and growth differentiation factor 9 co-operate to regulate granulose cell function in ruminants. Reproduction 129:481-487, 2005 https://doi.org/10.1530/rep.1.00517