DOI QR코드

DOI QR Code

Characterization of a Novel Cucumber mosaic virus Isolated from Petunia hybrida

  • Han, Kyung-Sook (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA)) ;
  • Choi, Gug-Seoun (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA)) ;
  • Chung, Bong-Nam (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA)) ;
  • Cho, Jeom-Duk (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA)) ;
  • Cho, In-Sook (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA)) ;
  • Kim, Kee-Hong (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA)) ;
  • Kim, Su (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Yoon, Ju-Yeon (Department of Horticulture and Landscape, Seoul Women's University) ;
  • Choi, Seung-Kook (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA))
  • 투고 : 2012.04.09
  • 심사 : 2012.05.16
  • 발행 : 2012.09.01

초록

Petunia hybrida is commonly used in landscapes and interiors for its attractive flower. Virus-like foliar symptoms, including a mosaic with dark green islands surrounding the veins and chlorosis on the leaf margins, were observed on a petunia plant from Icheon, Gyeonggido, Korea. Cucumber mosaic virus (CMV) was identified in the symptomatic petunia by serological testing for the presence of CMV coat protein (CP) with a direct antibody-sandwich-enzyme-linked immunosorbent assay. An agent was mechanically transmitted to indicator plant species including Chenopodium quinoa. Examination of the inoculated plant leaves by RT-PCR analysis and electron microscopy revealed the presence of specifically amplified CP products and spherical virions of approximately 28 nm in diameter, respectively, providing confirmation of a CMV infection. Analysis of CP sequences showed that CMV petunia isolate (CMVYJC) shared 82.5-100% amino acid sequence identity with CPs of representative CMV strains. Phylogenetic analysis of CPs supports that CMV-YJC is a member of CMV subgroup IA (CMV-IA) and has biological properties of CMV-IA on host species. To our knowledge, this is the first report of CMV from P. hybrida in Korea.

키워드

참고문헌

  1. Bellardi, M. G., Rubies-Aubies-Autonell, C. and Vicchi, V. V. 1996. Virus infections of Surfinia in Italy. Acta Hort. 432:88-94.
  2. Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., Watson, L. and Zurcher, E. J. 1996. Plant viruses online: Descriptions and lists from the VIDE database (http://www.agls.uidaho.edu/ebi/vdie/refs.htm).
  3. Canto, T., Prior, D. A., Hellwald, K. H., Oparka, K. J. and Palukaitis, P. 1997. Characterization of cucumber mosaic virus. IV. Movement protein and coat protein are both essential for cell-to-cell movement of cucumber mosaic virus. Virology 237:237-248. https://doi.org/10.1006/viro.1997.8804
  4. Choi, S. K., Palukaitis, P., Min, B. E., Lee, M. Y., Choi, J. K. and Ryu, K. H. 2005. Cucumber mosaic virus 2a polymerase and 3a movement proteins independently affect both virus movement and the timing of symptom development in zucchini squash. J. Gen. Virol. 86:1213-1222. https://doi.org/10.1099/vir.0.80744-0
  5. Choi, S. K., Yoon, J. Y., Choi, J. K., Kim, K. H. and Sohn, S. H. 2007. Analysis of symptom determinant of cucumber mosaic virus RNA3 via pseudorecombinat virus in zucchini squash. Plant Pathol. J. 23:272-280. https://doi.org/10.5423/PPJ.2007.23.4.272
  6. Clark, M. F. and Adams, A. N. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34:475-783. https://doi.org/10.1099/0022-1317-34-3-475
  7. Dai, S. P. and Bao, M. Z. 2004. Advances in genetics and breeding of Petunia hybrida Vilm. Chinese Bull. Bot. 21:385-391.
  8. Edwardson, J. R. and Christie, R. G. 1997. Viruses infecting peppers and other solanaceous crops. Vol. I. Univ. of Florida-IFAS, Gainesville, Monograph 18-I.
  9. Gal-On, A., Kaplan, I., Roossinck, M. J. and Palukaitis, P. 1994. The kinetics of infection of zucchini squash by cucumber mosaic virus indicates a function for RNA1 in virus movement. Virology 205:280-289. https://doi.org/10.1006/viro.1994.1644
  10. Habili, N. and Francki, R. I. B. 1974. Comparative studies on tomato aspermy and cucumber mosaic viruses. II. Virus stability. Virology 60:29-36. https://doi.org/10.1016/0042-6822(74)90362-6
  11. Hamrick, D. 1997. American floriculture production: The numbers. Grower Talks. June p86.
  12. Hayes, R. J. and Buck, K. W. 1990. Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell 63:363-368. https://doi.org/10.1016/0092-8674(90)90169-F
  13. Hull, R. 2002. Matthew's plant virology, 4th edn. Academic Press, New York, USA.
  14. Huppert, E., Szilassy, D., Salanki, K., Diveki, Z. and Balazs, E. 2002. Heterologous movement protein strongly modifies the infection phenotype of cucumber mosaic virus. Journal of Virology 76:3554-3557. https://doi.org/10.1128/JVI.76.7.3554-3557.2002
  15. Kaplan, I. B., Gal-on, A. and Palukaitis, P. 1997. Characterization of cucumber mosaic virus. III. Localization of sequences in the movement protein controlling systemic infection in cucurbits. Virology 230:343-349. https://doi.org/10.1006/viro.1997.8468
  16. Lane, L. C. 1992. A general method for detecting plant viruses. In: K. Maramorosch (ed.) Plant diseases of viral, viroid, mycoplasma and uncertain etiology. Westview Press, Boulder, Colorado, USA.
  17. Lawson, R. H. and Hsu, H. T. 1994. The current state of research in plant disease control of ornamental plants: Plant Virology. Acta Hort. 353:177-179.
  18. Lee, J. A., Choi, S. K., Yoon, J. Y., Hong, J. S.,. Ryu, K. H., Lee, S. Y. and Choi, J. K. 2007. Variation in the pathogenicity of lily isolates of Cucumber mosaic virus. Plant Pathol. J. 23:251-259. https://doi.org/10.5423/PPJ.2007.23.4.251
  19. Le Romancer, M. and Nedellec, M. 1997. Effect of plant genotype, virus isolate and temperature on the expression of the potato tuber necrotic ring disease (PTNRD). Plant Pathol. 46:104-111. https://doi.org/10.1046/j.1365-3059.1997.d01-212.x
  20. Lesemann, D. E. 1996. Viruses recently detected in vegetatively propagated petunia. Acta Hort. 432:88-94.
  21. Lindgren, D. T. 1993. Petunias. Coop. Ext. Inst. of Agr. and Natural Resourcess. Univ. of Nebraska. Lincoln.
  22. Marvic, I., Blatnik, A. and Ravnikar, M. 1996. Viruses infecting trailing petunias in Slovenia. Acta Hort. 432:364-366.
  23. Palukaitis, P. and Garcia-Arenal, F. 2003. Cucumoviruses. Adv. Virus Res. 62:241-323. https://doi.org/10.1016/S0065-3527(03)62005-1
  24. Palukaitis, P., Roossinck, M. J., Dietzgen, R. G. and Francki, R. I. B. 1992. Cucumber mosaic virus. Adv. Virus Res. 41:281-348. https://doi.org/10.1016/S0065-3527(08)60039-1
  25. Peden, K. W. C. and Symons, R. H. 1973. Cucumber mosaic virus contains a functionally divided genome. Virology 53:487-492. https://doi.org/10.1016/0042-6822(73)90232-8
  26. Pirone, P. P. 1978. Diseases and pests of ornamental plants. 5th ed. Wiley, New York, USA.
  27. Rao, A. L. N. and Francki, R. I. B. 1982. Distribution of determinants for symptom production and host range in the three RNA components of cucumber mosaic virus. J. Gen. Virol. 61:197-205. https://doi.org/10.1099/0022-1317-61-2-197
  28. Roossinck, M. J. and Palukaitis, P. 1990. Rapid induction and severity of symptoms in zucchini squash (Cucurbita pepo) map to RNA1 of cucumber mosaic virus. Mol. Plant-Microbe Interact. 3:188-192. https://doi.org/10.1094/MPMI-3-188
  29. Sanchez-Cuevas, M. C. and Mameth, S. G. P. 2002. Virus-associated diseases of double petunia: Frequency and distribution in Ohio greenhouses. Acta Hort. 37:543-546.
  30. Sink, K. C. 1984. Petunia, monographs on theoretical and applied genetics. Springer-Verlag. Berlin, Germany.
  31. Shintaku, M. H., Zhang, L. and Palukaitis, P. 1992. A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco. Plant Cell 4:751-757. https://doi.org/10.1105/tpc.4.7.751
  32. Suzuki, M., Kuwata, S., Masuta, C. and Takanami, Y. 1995. Point mutations in the coat protein of cucumber mosaic virus affect symptom expression and virion accumulation in tobacco. J. Gen. Virol. 76:1791-1719. https://doi.org/10.1099/0022-1317-76-7-1791
  33. Szilassy, D., Salanki, K. and Balazs, E. 1999. Stunting induced by cucumber mosaic cucumovirus-infected Nicotiana glutinosa is determined by a single amino acid residue in the coat protein. Mol. Plant-Microbe Interact. 12:1105-1113. https://doi.org/10.1094/MPMI.1999.12.12.1105
  34. Takeshita, M., Suzuki, M. and Takanami, Y. 2001. Combination of amino acids in the 3a protein and the coat protein of cucumber mosaic virus determines symptom expression and viral spread in bottle gourd. Arch. Virol. 146:697-711. https://doi.org/10.1007/s007050170140
  35. Yoon, J. Y., Chung, B. N., Choi, G. S. and Choi, S. K. 2011. Genetic variability in the coat protein genes of cymbidium mosaic virus isolates from orchids. Virus Genes 44:323-328.

피인용 문헌

  1. First Report of Cucumber mosaic virus in Farfugium japonicum in Korea vol.101, pp.1, 2017, https://doi.org/10.1094/PDIS-06-16-0898-PDN
  2. First Report of Cucumber mosaic virus Infecting Pimpinella brachycarpa in Korea vol.101, pp.5, 2017, https://doi.org/10.1094/PDIS-08-16-1191-PDN