DOI QR코드

DOI QR Code

PLD 법으로 증착된 Mg0.5Zn0.5O 박막의 산소 분압 변화에 따른 구조적 특성

Effect of Oxygen Pressure on the Structure Properties of Mg0.5Zn0.5O Thin Films Grown by Pulsed Laser Deposition

  • 김창회 (한국해양대학교 나노반도체 공학과) ;
  • 김홍승 (한국해양대학교 나노반도체 공학과) ;
  • 이종훈 (한국해양대학교 나노반도체 공학과) ;
  • 박미선 (동의대학교 융합부품공학과) ;
  • 빈민욱 (동의대학교 융합부품공학과) ;
  • 이원재 (동의대학교 융합부품공학과) ;
  • 장낙원 (한국해양대학교 전기전자과)
  • Kim, Chang-Hoi (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Kim, Hong-Seung (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Lee, Jong-Hoon (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Park, Mi-Seon (Department of Nano Technology, Dong Eui University) ;
  • Pin, Min-Wook (Department of Nano Technology, Dong Eui University) ;
  • Lee, Won-Jae (Department of Nano Technology, Dong Eui University) ;
  • Jang, Nak-Won (Department of Nano Semiconductor Engineering, Korea Maritime University)
  • 투고 : 2012.07.30
  • 심사 : 2012.08.17
  • 발행 : 2012.09.01

초록

In this work, we study on the effects of the oxygen pressure on the structural and crystalline of MgZnO thin films. MgZnO thin films were deposited on p-Si (111) substrates by using pulsed laser deposition. The X-ray diffraction analysis and energy-dispersive X-ray results revealed that as the oxygen pressure increased and Mg content in the MgZnO films decreased. Also Crystal structure was changed from cubic rock salt to hexagonal wurtzite. Alpha step and atomic force microscopy results showed that the thickness of the films are about 100 nm, and it has been found that the MgZnO (002) preferred orientation were deposited with increasing the oxygen pressure. Therefore, the effect of the preferred orientation, the crystallization grew in the form of the columnar; Grain size and RMS of the films were increased with increasing oxygen pressure.

키워드

참고문헌

  1. D. C. Reynolds, D. C. Look, and B. Jogai, Solid State Commun., 99, 873 (1996). https://doi.org/10.1016/0038-1098(96)00340-7
  2. W. W. Wensa, A. Yamada, K. Takahashi. M. Yoshino, and M. Konagai, J. Appl. Phys., 70, 7119 (1991). https://doi.org/10.1063/1.349794
  3. H. S. Kang, J. W. Kim, and S. Y. Lee, J. Appl. Phys., 95, 1246 (2004). https://doi.org/10.1063/1.1633343
  4. D. C. Look, Mater. Sci. Eng., B80, 383 (2001). https://doi.org/10.1016/S0921-5107(00)00604-8
  5. H. Tanaka, S. Fujita, and S. Fujita, Appl. Phys. Lett., 86, 192911 (2005). https://doi.org/10.1063/1.1923762
  6. T. Takagi, H. Tanaka, S. Fujita, and S. Fujita, Jpn. J. Appl. Phys., 42, L401 (2003). https://doi.org/10.1143/JJAP.42.L401
  7. Y. Chen, H. J. Ko, S. K. Hong, and T. Yao, Appl. Phys. Lett., 76, 559 (2000). https://doi.org/10.1063/1.125817
  8. A. Ohotomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett., 72, 2466 (1998). https://doi.org/10.1063/1.121384
  9. A. Kaushal and D. Kaur, Sol. Energ. Mat. Sol., C93, 193 (2009). https://doi.org/10.1016/j.solmat.2008.09.039
  10. S. Sadofev, S. Blumstengel, J. Cui, J. puls, S. Rogaschewski, P. Schafer, Y. G. Sadofyev, and F. Henneberger, Appl. Phys. Lett., 87, 091903 (2005). https://doi.org/10.1063/1.2034113
  11. R. D. Shannon, Acta Crystallogr. Sect., A32, 751 (1976)
  12. C. X. Wu, Y. M. Lu, D. Z. Shen, and X. W. Fan, Chinese Sci Bull., 55, 90 (2010). https://doi.org/10.1007/s11434-009-0393-y
  13. X. Chen and J. Kang, Semicond. Sci. Technol., 23, 025008 (2008). https://doi.org/10.1088/0268-1242/23/2/025008
  14. A. Kaushal and D. Kaur, Sol. Energ. Mat. Sol. C., 93, 193 (2009). https://doi.org/10.1016/j.solmat.2008.09.039
  15. S. C. Su, Y. M. Lu, Z. Z. Zhang, B. H. Li, D. Z. Shen, B. Yao, J. Y. Zhang, D. X. Zhao, and X. W. Fan, Appl. Surf. Sci., 254, 4886 (2008). https://doi.org/10.1016/j.apsusc.2008.01.132
  16. B. Z. Dong, G. J. Fang, J. F. Wang, W. J. Guan, and X. Z. Zhao, J. Appl. Phys., 101, 033713 (2007). https://doi.org/10.1063/1.2437572