DOI QR코드

DOI QR Code

Review on Thermal Storage Media for Cavern Thermal Energy Storage

지하공동 열에너지 저장을 위한 축열 매질의 기술 현황 검토

  • 박정욱 (한국지질자원연구원 지구환경연구본부) ;
  • 박도현 (한국지질자원연구원 지구환경연구본부) ;
  • 최병희 (한국지질자원연구원 지구환경연구본부) ;
  • 한공창 (한국지질자원연구원 지구환경연구본부)
  • Received : 2012.07.09
  • Accepted : 2012.08.06
  • Published : 2012.08.31

Abstract

Developing efficient and reliable energy storage system is as important as exploring new energy resources. Energy storage system can balance the periodic and quantitative mismatch between energy supply and energy demand and increase the energy efficiency. Industrial waster heat and renewable energy such as solar energy can be stored by the thermal energy storage (TES) system at high and low temperatures. TES system using underground rock carven is considered as an attractive alternative for large-scale storage, because of low thermal conductivity and chemical safety of surrounding rock mass. In this report, the development of available thermal energy storage methods and the characteristics of storage media were introduced. Based on some successful applications of cavern storage and high-temperature storage reported in the literature, the applicabilities and practicabilities of storage media and technologies for large-scale cavern thermal energy storage (CTES) were reviewed.

에너지의 효과적인 저장과 관리는 에너지 공급과 수요의 시간적 양적 불균형을 해소하고, 에너지 이용효율을 향상시킬 수 있다는 점에서 새로운 에너지원을 개발하는 일만큼 중요하다. 열에너지 저장 시스템은 산업폐열이나 태양열과 같은 열원 기반의 에너지를 저장하는 시스템으로서, 대용량 저장 시설에 암반 지하공동을 활용하는 경우 주변 암반의 낮은 열전달 특성과 높은 화학적 안정성을 통해 보다 효율적인 저장 시스템을 구축할 수 있다는 장점이 있다. 본 연구에서는 열에너지 저장 방식과 저장 매질의 일반적인 특성과 열에너지 저장사례에 대하여 살펴보고, 지하공동을 활용한 열에너지 저장 시스템에 대한 각 저장 매질의 적용성에 대해 개괄적으로 검토하였다.

Keywords

References

  1. 김진수, 강용혁, 2006, 고온 축열 기술개발동향. 태양에너지, Vol. 5, No. 2, pp. 12-19.
  2. 전명석, 2006, 상변화물질을 이용한 잠열축열 기술. 태양에너지, Vol. 5, No. 1, pp. 12-29.
  3. Park, D., H. M. Kim, D. W. Ryu, B. H. Choi, C. Sunwoo, C. and K. C. Han, 2012, Technologies of underground thermal energy storage (UTES) and Swedish case for hot water. Tunnel and Underground Space, Vol. 22, No. 2, pp. 1-11. https://doi.org/10.7474/TUS.2012.22.1.001
  4. Shin, B. C., S. D. Kim, K. Y. Park and W. H. Park, 1987, Characteristics of high-temperature energy storage materials. Journal of the Korean solar energy society, Vol. 7, No. 1, pp. 61-74.
  5. Shim, B. O. and C. Lee, 2010, Status of underground thermal energy storage as shallow geothermal energy. Economic and Environmental Geology, Vol. 43, No. 2, pp. 197-205.
  6. Ataer, O.E., 2008, Storage of Thermal Energy. Encyclopedia of Life Support Systems (EOLSS).
  7. Geyer, M. A., 1991, Thermal Storage for Solar Power Plants. In: Winter, C., Rizmann, R., Van-Hull, L. (eds.) Solar Power Plants, Springer-Verlag, New York.
  8. Gil, A., M. Medrano, I. Martorell, A. Lazaro, P. Dolado, B. Zalba and L. Cabeza, 2010, State of the art on high temperature thermal energy storage for power generation. Part 1 - Concepts, materials and modellization. Renewable and Sustainable Energy Reviews, Vol. 14, No. 1, pp. 31-55. https://doi.org/10.1016/j.rser.2009.07.035
  9. Hasnain, S.M., 1998, Review on sustainable thermal energy storage technologies. Part 1: Heat storage materials and techniques, Energy Conversion and Management, Vol. 39, No. 11, pp. 1127-1138. https://doi.org/10.1016/S0196-8904(98)00025-9
  10. Herrmann, U., M. Geyer and D. Kearney, 2006, Overview on thermal storage systems, Workshop on Thermal Storage for Trough Power Plants, FLABEG Solar International GmbH.
  11. Laing, D., W. D. Steinmann, R. Tamme and C. Richter, 2006, Solid media thermal storage for parabolic trough power plants. Solar Energy, Vol. 80, No. 10, pp. 1283- 1289. https://doi.org/10.1016/j.solener.2006.06.003
  12. Lovegrove, K., A. Luzzi and H. Kreetz, 1999, A solardriven ammonia-based thermochemical energy storage system. Solar Energy, Vol. 67, No. 4, pp. 309-316. https://doi.org/10.1016/S0038-092X(00)00074-8
  13. Medrano, M., A. Gil, I. Martorell, X. Potau and L. F. Cabeza, 2010, State of the art on high-temperature thermal energy storage for power generation. Part 2 - Case studies: Renewable and Sustainable Energy Reviews, Vol. 14, No. 2, pp. 56-72. https://doi.org/10.1016/j.rser.2009.07.036
  14. Michels, H. and R. Pitz-Paal, 2007, Cascaded latent heat storage for parabolic trough solar power plants. Solar Energy, Vol. 81, No. 6, pp. 829-837. https://doi.org/10.1016/j.solener.2006.09.008
  15. Nordell, B., M. Grein, and M. Kharseh, 2007, Large-scale utilisation of renewable energy requires energy storage, Int. Conf. for Renewable Energies and Sustainable Development (ICRESD_07), Algeria.
  16. Planta Solar de Almeria, 2007, Informe annual 2006.
  17. Sharma, A., V. Tyagi, C. Chen and D. Buddhi, 2009, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, Vol. 13, No. 2, pp. 318-345. https://doi.org/10.1016/j.rser.2007.10.005
  18. SKANSKA, 1983, Swedish rock technique: Lyckebo seasonal energy storage plant, SKANSKA technical brochure.
  19. Steinmann, W. D. and R. Tamme, 2008, Latent heat storage for solar steam systems, Journal of Solar Energy Engineering-Transactions of the ASME, Vol. 130, pp. 41-45.
  20. Tamme, R., 2003, Concrete storage: update on the German concrete TES program, In: Proceedings of Workshop on thermal storage for trough power systems, Golden, Colorado, USA, pp. 20-21.
  21. Underground Energy, LLC. (http://www.undergroundenergy.com)
  22. Van Berkel, J., 2005, Storage of solar energy in chemical reactions. In: Jean-Christophe, H. (ed.) Thermal energy storage for solar and low energy buildings, Lleida, Spain.
  23. Zalba, B., J. M. Marín, L. F. Cabeza and H. Mehling, 2003, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng, Vol. 23, pp. 251-283. https://doi.org/10.1016/S1359-4311(02)00192-8

Cited by

  1. Study on the Effect of Ground Heat Storage by Solar Heat Using Numerical Simulation vol.8, pp.12, 2015, https://doi.org/10.3390/en81212388