DOI QR코드

DOI QR Code

Review of Micro/Nano Nondestructive Evaluation Technique (II): Measurement of Acoustic Properties

마이크로/나노 비파괴평가 기술(II): 음향특성계측

  • 김정석 (한양대학교 자동차공학과) ;
  • 박익근 (서울과학기술대학교 기계자동차공학과)
  • Received : 2012.05.02
  • Accepted : 2012.06.20
  • Published : 2012.08.30

Abstract

The present paper reviews the micro and nano nondestructive evaluation(NDE) technique that is possible to investigate the surface and measure the acoustic properties. The technical theory, features and applications of the ultrasonic atomic force microscopy(UAFM) and scanning acoustic microscopy(SAM) are illustrated. Especially, these technologies are possible to evaluate the mechanical properties in micro/nano structure and surface through the measurement of acoustic properties in addition to the observation of surface and subsurface. Consequently, it is thought that technique developments and applications of these micro/nano NDE in advanced industrial parts together with present nondestructive industry are widely possible hereafter.

본 논문은 재료의 표면검사와 음향특성 측정이 가능한 마이크로/나노 비파괴평가 기술을 소개한다. 이들 기술로 초음파원자현미경과 초음파현미경의 원리와 특징 그리고 응용분야에 대해서 기술하였다. 특히, 이들 기술은 표면과 표면직하의 이미지 관찰 외에도 음향특성을 측정하여 마이크로/나노 구조물 혹은 표면에서의 기계적인 물성평가가 가능한 기술이다. 따라서 기존 비파괴분야와 함께 첨단 산업분야에 있어 마이크로/나노 비파괴평가의 적용과 기술 개발이 향후 폭넓게 가능할 것으로 판단된다.

Keywords

References

  1. V. Natarajan, "Micro and nano science and technology: naval perspective," Science Spectrum 2009, Defence Research & Development Organization, Ministry of Defence, India, pp. 237-244 (2009)
  2. A. Bonaccorsi and Grid Thoma, "Institutional complementarity and inventive performance in nano science and technology," Research Policy, Vol. 36, pp. 813-831 (2007) https://doi.org/10.1016/j.respol.2007.02.009
  3. M. Kautt, S. T. Walsh and K. Bittner, "Global distribution of micro-nano technology and fabrication centers: A portfolio analysis approach," Technological Forecasting and Social Change, Vol. 74, No. 9, pp. 1697-1717 (2007) https://doi.org/10.1016/j.techfore.2007.07.002
  4. B. Wunderle and B. Michel, "Progress in reliability research in the micro and nano region," Microelectronics Reliability, Vol. 46, pp. 1685-1694 (2006) https://doi.org/10.1016/j.microrel.2006.08.005
  5. R. J. Cherry, "New Techniques of Optical Microscopy and Microspectroscopy," CRC Press, Florida, USA (1991)
  6. H. Hart, "Hydrogen cracking - its causes, costs and future occurrence," Proceeding of 1st International Conference on Weld Metal Hydrogen Cracking in Pipeline Girth Welds, Wollongong, Australia (1999)
  7. C. Sheppard, "Confocal Laser Scanning Microscopy," 1st Ed. Springer, New York, UAS (1997)
  8. S. R. Kothapalli and L. V. Wang, "Ultrasound-modulated optical microscopy," Journal of Biomedical Optics, Vol. 13, 054046 (2008) https://doi.org/10.1117/1.2983671
  9. S. Sakadzic and L. V. Wang, "High-resolution ultrasound-modulated optical tomography in biological tissues," Optics Letters, Vol. 29, pp. 2770-2772 (2004) https://doi.org/10.1364/OL.29.002770
  10. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. E. Lyman, E. Lifshin. L. Sawyer and J. R. Michael, "Scanning Electron Microscopy and X-ray Microanalysis," 3rd Ed. Kluwer Academic/Plenum Publishers, New York, USA (2003)
  11. D. C. Joy, "Scanning electron microscopy for materials characterization," Current Opinion in Solid State and Materials Science, Vol. 2, pp. 465-468 (1997) https://doi.org/10.1016/S1359-0286(97)80091-5
  12. A. J. Schwartz, M. Kumar, B. L. Adams and D. P. Field, "Electron Backscatter Diffraction in Materials Science," 2nd Ed. Springer, New York, USA (2009)
  13. D. B. Williams and C. B. Carter, "Transmission Electron Microscopy: A Textbook for Materials Science," 1st Ed. Springer, New York, USA (2004)
  14. D. Bonnell, "Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications," 2nd Ed. Wiley-VCH, New York, USA (2000)
  15. B. T. Khuri-Yakub, "Scanning acoustic microscopy," Ultrasonics, Vol. 31, No. 5, pp. 361-372 (1993) https://doi.org/10.1016/0041-624X(93)90070-G
  16. A. Kamanyi, W. Ngwa, T. Betz, R. Wannemacher and W. Grill, "Combined phasesensitive acoustic microscopy and confocal laser scanning microscopy," Ultrasonics, Vol. 44, pp. 1295-1300 (2006) https://doi.org/10.1016/j.ultras.2006.05.030
  17. U. Rabe, S. Amelio, E. Kester, V. Scherer, S. Hirsekorn and W. Arnold, "Quantitative determination of contact stiffness using atomic force acoustic microscopy," Ultrasonics, Vol. 38, pp. 430-437 (2000) https://doi.org/10.1016/S0041-624X(99)00207-3
  18. S. Amelio, A. V. Goldade, U. Rabe, V. Scherer, B. Bhushan and W. Arnold, "Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy," Thin Solid Films, Vol. 392, No. 1, pp. 75-84 (2001) https://doi.org/10.1016/S0040-6090(01)00903-8
  19. P. Goudeau, P. O. Renault, P. Villain, C. Coupeau, V. Pelosin, B. Boubeker, K. F. Badawi, D. Thiaudière and M. Gailhanou, "Characterization of thin film elastic properties using X-ray diffraction and mechanical methods: application to polycrystalline stainless steel," Thin Solid Films, Vol. 398-399, pp. 496-500 (2001) https://doi.org/10.1016/S0040-6090(01)01464-X
  20. H. Y. Chen, J. H. Chen and F. H. Lu, "Evaluation of Poisson's ratio and Young's modulus of nitride films by combining grazing incidence X-ray diffraction and laser curvature techniques," Thin Solid Films, Vol. 516, pp. 345-348 (2007) https://doi.org/10.1016/j.tsf.2007.06.135
  21. V. V. Sumin, I. V. Papushkin, R. N. Vasin, А. M. Venter and А. M. Balagurov, "Determination of the residual stress tensor in textured zirconium alloy by neutron diffraction," Journal of Nuclear Materials, Vol. 421, pp. 64-72 (2012) https://doi.org/10.1016/j.jnucmat.2011.11.053
  22. M. Salmeron, G. Nuebauer, A. Folch, M. Tomitori, D. F. Ogletree and P. Sautet, "Viscoelastic and electrical properties of self-assembled monolayers on gold (111) films," Langmuir, Vol. 9, pp. 3600-3611 (1993) https://doi.org/10.1021/la00036a041
  23. S. N. Magonov, V. Elings and M. H. Whangbo, "Phase imaging and stiffness in tapping-mode atomic force microscopy," Surface Science Letters, Vol. 375, pp. L385-L391, (1997) https://doi.org/10.1016/S0039-6028(96)01591-9
  24. C. Miyasaka, B. R. Tittmann, T. Adachi and A. Yamaji, "Theoretical approach to contrast mechanism for UAFM," PVP-2002, ASME conference, Vol. 450, pp. 63-67 (2002)
  25. Y. Martin, C. C. Williams, and H. K. Wickramasinghe, "Atomic force microscopeforce mapping and profiling on a sub 100-${\AA}$ scale," Journal of Applied Physics, Vol. 61, pp. 4723-4729 (1987) https://doi.org/10.1063/1.338807
  26. K. Yamanaka and S. Nakano, "Ultrasonic atomic force microscope with overtone excitation of cantilever," Japanese Journal of Physics, Vol. 35, pp. 3787-3792 (1996) https://doi.org/10.1143/JJAP.35.3787
  27. K. Yamanaka and S. Nakano, "Quantitative elasticity evaluation by contact resonance in an atomic force microscope," Applied Physics A, Vol. 66, 313-317 (1998) https://doi.org/10.1007/s003390051153
  28. C. J. Druffner and S. Sathish, "Atomic force and ultrasonic force microscopic investigation of laser-treated ceramic head sliders," Journal of American Ceramic Society, Vol. 86, pp. 2122-2128 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03619.x
  29. J. T. Zeng, K. Y. Zhao, H. R. Zeng, H. Z. Song, L. Y. Zheng, G. R. Li and Q. R. Yin, "Subsurface defect of amorphous carbon film imaged by near field acoustic microscopy," Applied Physics A: Materials Science & Processing, Vol. 91, No. 2, pp. 261-265 (2008) https://doi.org/10.1007/s00339-008-4408-3
  30. M. Muraoka, "Sensitivity-enhanced atomic force acoustic microscopy with concentratedmass cantilevers," Nanotechnology, Vol. 16, pp. 542-550 (2005) https://doi.org/10.1088/0957-4484/16/4/035
  31. K. Yamanaka and S. Nakano, "Quantitative elasticity evaluation by contact resonance in an atomic force microscope," Applied Physics A, Vol. 66, pp. 313-317 (1998) https://doi.org/10.1007/s003390051153
  32. Y. Gaillard, E. Jimeez-Pique F. Soldera, F. Mucklich and M. Anglada, "Quantification of hydrothermal degradation in zirconia by nanoindentation," Acta Materialia, Vol. 56, pp. 4206-4216 (2008) https://doi.org/10.1016/j.actamat.2008.04.050
  33. S. Parthasarathi, B. R. Tittmann and R. J. Ianno, "Quantitative acoustic microscopy for characterization of the interface strength of diamond-like carbon thin films," Thin Solid Films, Vol. 300, pp. 42-50 (1997) https://doi.org/10.1016/S0040-6090(96)09501-6
  34. J. M. R. Weaver, M. G. Somekh, A. D. Briggs, S. D. Peck and C. Ilett, "Applications of the scanning reflection acoustic microscope to the study of materials science," IEEE Transactions on Sonics Ultrasonics, Vol. SU-32, No. 2, pp. 302-312 (1985)
  35. H. S. Ju and B. R. Tittmann, "Recent advances in scanning acoustic microscopy for adhesion evaluation on thin films," Journal of the Korean Society for Nondestructive Testing, Vol. 29, No. 6, pp. 534-549 (2009)
  36. C. S. Kim, Y. K. Kim, I. K. Park and S. I. Kwun, "Characterization of residual stress in shot peened Al 7075 alloy using surface acoustic wave," Journal of the Korean Society for Nondestructive Testing, Vol. 26, No. 5, pp. 291-296 (2006)
  37. C. S. Kim, D. S. Cho and I. K. Park, "Ultrasonic characterization of residual stress in shot peened Al 7075 alloy using acoustic signature," Key Engineering Materials, Vol. 321-323, pp. 1475-1478 (2006) https://doi.org/10.4028/www.scientific.net/KEM.321-323.1475
  38. J. Kushibiki and N. Chubachi, "Material characterization by line-focus-beam acoustic microscope," IEEE Transactions and Ultrasonics, Vol. 32, No. 2, pp. 189-212 (1985) https://doi.org/10.1109/T-SU.1985.31586
  39. C. S. Kim, I. K. Park, K. Y. Jhang and C. Miyasaka, "Determination of elastic modulus of equal-channel-angular-pressed aluminum 5052 alloy by acoustic material signature," Journal of the Korean Society for Nondestructive Testing, Vol. 30, No. 2. pp. 146-154 (2010)
  40. P. V. Zainin, M. H. Manghnani, S. Berezina, B. Koehler, D. Fei and D. A. Rebinsky, "The FIB/SEM technique, atomic force microscopy and acoustic microscipy for detection of subsurface defects in thin DLC coatings," Microscopy and Microanalysis, Vol. 11, pp. 668-669 (2005)
  41. E. C. Weiss, P. Anastasiadis, G. Pilarczyk, R. M. Lenor and P. V. Zinin, "Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 54, pp. 2257-2271 (2007) https://doi.org/10.1109/TUFFC.2007.530
  42. E. C. Weiss, R. M. Lemor, G. Pilarczyk, P. Anastasiadis and P. V. Zinin, "Imaging of focal contacts of chicken heart muscle cells by high-frequency acoustic microscopy," Ultrasound in Medicine & Biology, Vol. 33, pp. 1320-1326 (2007) https://doi.org/10.1016/j.ultrasmedbio.2007.01.016
  43. L. Robert, N. Brunet, T. Flaherty, T. Randles, E. Matthaei-Schulz, H. Vetters, D. Rats and V. V. Stebut, "Characterisation of TiN and carbon-doped chromium thin film coatings by acoustic microscopy," Surface and Coatings Technology, Vol. 116-119, pp. 327-334 (1999) https://doi.org/10.1016/S0257-8972(99)00316-3

Cited by

  1. Thickness Measurement of Ni Thin Film Using Dispersion Characteristics of a Surface Acoustic Wave vol.34, pp.2, 2014, https://doi.org/10.7779/JKSNT.2014.34.2.171
  2. Measurement of Elastic Constants by Simultaneously Sensing Longitudinal and Shear Waves as an Overlapped Signal vol.36, pp.2, 2016, https://doi.org/10.7779/JKSNT.2016.36.2.138