DOI QR코드

DOI QR Code

Neuroprotective effects of L-carnitine against oxygen-glucose deprivation in rat primary cortical neurons

  • Kim, Yu-Jin (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Soo-Yoon (Samsung Biochemical Research Institute) ;
  • Sung, Dong-Kyung (Samsung Biochemical Research Institute) ;
  • Chang, Yun-Sil (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Park, Won-Soon (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2011.08.01
  • Accepted : 2012.03.20
  • Published : 2012.07.15

Abstract

Purpose: Hypoxic-ischemic encephalopathy is an important cause of neonatal mortality, as this brain injury disrupts normal mitochondrial respiratory activity. Carnitine plays an essential role in mitochondrial fatty acid transport and modulates excess acyl coenzyme A levels. In this study, we investigated whether treatment of primary cultures of rat cortical neurons with L-carnitine was able to prevent neurotoxicity resulting from oxygen-glucose deprivation (OGD). Methods: Cortical neurons were prepared from Sprague-Dawley rat embryos. L-Carnitine was applied to cultures just prior to OGD and subsequent reoxygenation. The numbers of cells that stained with acridine orange (AO) and propidium iodide (PI) were counted, and lactate dehydrogenase (LDH) activity and reactive oxygen species (ROS) levels were measured. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the terminal uridine deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay were performed to evaluate the effect of L-carnitine (1 ${\mu}M$, 10 ${\mu}M$, and 100 ${\mu}M$) on OGD-induced neurotoxicity. Results: Treatment of primary cultures of rat cortical neurons with L-carnitine significantly reduced cell necrosis and prevented apoptosis after OGD. L-Carnitine application significantly reduced the number of cells that died, as assessed by the PI/AO ratio, and also reduced ROS release in the OGD groups treated with 10 ${\mu}M$ and 100 ${\mu}M$ of L-carnitine compared with the untreated OGD group (P<0.05). The application of L-carnitine at 100 ${\mu}M$ significantly decreased cytotoxicity, LDH release, and inhibited apoptosis compared to the untreated OGD group (P<0.05). Conclusion: L-Carnitine has neuroprotective benefits against OGD in rat primary cortical neurons in vitro.

Keywords

References

  1. Johnston MV, Trescher WH, Ishida A, Nakajima W. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res 2001;49:735-41. https://doi.org/10.1203/00006450-200106000-00003
  2. Vannucci RC. Hypoxic-ischemic encephalopathy. Am J Perinatol 2000; 17:113-20. https://doi.org/10.1055/s-2000-9293
  3. Aliev G, Smith MA, Obrenovich ME, de la Torre JC, Perry G. Role of vascular hypoperfusion-induced oxidative stress and mitochondria failure in the pathogenesis of Azheimer disease. Neurotox Res 2003;5:491-504. https://doi.org/10.1007/BF03033159
  4. Gilland E, Puka-Sundvall M, Hillered L, Hagberg H. Mitochondrial function and energy metabolism after hypoxia-ischemia in the immature rat brain: involvement of NMDA-receptors. J Cereb Blood Flow Metab 1998;18:297-304. https://doi.org/10.1097/00004647-199803000-00008
  5. Gustavsson M, Anderson MF, Mallard C, Hagberg H. Hypoxic precondi tioning confers long-term reduction of brain injury and improvement of neurological ability in immature rats. Pediatr Res 2005;57:305-9. https://doi.org/10.1203/01.PDR.0000151122.58665.70
  6. Wagner CL, Eicher DJ, Katikaneni LD, Barbosa E, Holden KR. The use of hypothermia: a role in the treatment of neonatal asphyxia? Pediatr Neurol 1999;21:429-43. https://doi.org/10.1016/S0887-8994(99)00020-X
  7. Ma D, Hossain M, Pettet GK, Luo Y, Lim T, Akimov S, et al. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats. J Cereb Blood Flow Metab 2006;26:199-208. https://doi.org/10.1038/sj.jcbfm.9600184
  8. Clancy RR, McGaurn SA, Goin JE, Hirtz DG, Norwood WI, Gaynor JW, et al. Allopurinol neurocardiac protection trial in infants undergoing heart surgery using deep hypothermic circulatory arrest. Pediatrics 2001; 108:61-70. https://doi.org/10.1542/peds.108.1.61
  9. Asou H, Ono K, Uemura I, Sugawa M, Uyemura K. Axonal growth-related cell surface molecule, neurin-1, involved in neuron-glia interaction. J Neurosci Res 1996;45:571-87. https://doi.org/10.1002/(SICI)1097-4547(19960901)45:5<571::AID-JNR7>3.0.CO;2-9
  10. Himmelseher S, Pfenninger E, Georgieff M. Effects of basic fibroblast growth factor on hippocampal neurons after axonal injury. J Trauma 1997; 42:659-64. https://doi.org/10.1097/00005373-199704000-00013
  11. Koeppen AH, Dickson AC, McEvoy JA. The heterogeneous distribution of brain transferrin. J Neuropathol Exp Neurol 1995;54:395-403. https://doi.org/10.1097/00005072-199505000-00012
  12. Houlgatte R, Mallat M, Brachet P, Prochiantz A. Secretion of nerve growth factor in cultures of glial cells and neurons derived from different regions of the mouse brain. J Neurosci Res 1989;24:143-52. https://doi.org/10.1002/jnr.490240204
  13. Rebouche CJ, Engel AG. Carnitine metabolism and deficiency syndromes. Mayo Clin Proc 1983;58:533-40.
  14. Winter S, Jue K, Prochazka J, Francis P, Hamilton W, Linn L, et al. The role of L-carnitine in pediatric cardiomyopathy. J Child Neurol 1995;10 Suppl 2:S45-51.
  15. Fritz IB, Arrigoni-Martelli E. Sites of action of carnitine and its derivatives on the cardiovascular system: interactions with membranes. Trends Pharmacol Sci 1993;14:355-60. https://doi.org/10.1016/0165-6147(93)90093-Y
  16. Wainwright MS, Kohli R, Whitington PF, Chace DH. Carnitine treatment inhibits increases in cerebral carnitine esters and glutamate detected by mass spectrometry after hypoxia-ischemia in newborn rats. Stroke 2006; 37:524-30. https://doi.org/10.1161/01.STR.0000198892.15269.f7
  17. Matsuishi T, Stumpf DA, Seliem M, Eguren LA, Chrislip K. Propionate mitochondrial toxicity in liver and skeletal muscle: acyl CoA levels. Biochem Med Metab Biol 1991;45:244-53. https://doi.org/10.1016/0885-4505(91)90027-I
  18. Pande SV, Blanchaer MC. Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters. J Biol Chem 197;246:402-11.
  19. Loster H, Keller T, Grommisch J, Grunder W. Effects of L-carnitine and its acetyl and propionyl esters on ATP and PCr levels of isolated rat hearts perfused without fatty acids and investigated by means of 31P-NMR spectroscopy. Mol Cell Biochem 1999;200:93-102. https://doi.org/10.1023/A:1006966817286
  20. Wang D, Xia Y, Buja LM, McMillin JB. The liver isoform of carnitine palmitoyltransferase I is activated in neonatal rat cardiac myocytes by hypoxia. Mol Cell Biochem 1998;180:163-70. https://doi.org/10.1023/A:1006815814283
  21. Iijima T, Mishima T, Akagawa K, Iwao Y. Neuroprotective effect of propofol on necrosis and apoptosis following oxygen-glucose deprivation: relationship between mitochondrial membrane potential and mode of death. Brain Res 2006;1099:25-32. https://doi.org/10.1016/j.brainres.2006.04.117
  22. Slivka A, Silbersweig D, Pulsinelli W. Carnitine treatment for stroke in rats. Stroke 1990;21:808-11. https://doi.org/10.1161/01.STR.21.5.808
  23. Shenk JC, Liu J, Fischbach K, Xu K, Puchowicz M, Obrenovich ME, et al. The effect of acetyl-L-carnitine and R-alpha-lipoic acid treatment in ApoE4 mouse as a model of human Alzheimer's disease. J Neurol Sci 2009;283:199-206. https://doi.org/10.1016/j.jns.2009.03.002
  24. Zou X, Sadovova N, Patterson TA, Divine RL, Hotchkiss CE, Ali SF, et al. The effects of L-carnitine on the combination of, inhalation anestheticinduced developmental, neuronal apoptosis in the rat frontal cortex. Neuroscience 2008;151:1053-65. https://doi.org/10.1016/j.neuroscience.2007.12.013
  25. Athanassakis I, Zarifi I, Evangeliou A, Vassiliadis S. L-carnitine accelerates the in vitro regeneration of neural network from adult murine brain cells. Brain Res 2002;932:70-8. https://doi.org/10.1016/S0006-8993(02)02283-7
  26. Loster H, Bohm U. L-carnitine reduces malondialdehyde concentrations in isolated rat hearts in dependence on perfusion conditions. Mol Cell Biochem 2001;217:83-90. https://doi.org/10.1023/A:1007255021484
  27. Long J, Gao F, Tong L, Cotman CW, Ames BN, Liu J. Mitochondrial decay in the brains of old rats: ameliorating effect of alpha-lipoic acid and acetyl-L-carnitine. Neurochem Res 2009;34:755-63. https://doi.org/10.1007/s11064-008-9850-2
  28. Wainwright MS, Mannix MK, Brown J, Stumpf DA. L-carnitine reduces brain injury after hypoxia-ischemia in newborn rats. Pediatr Res 2003;54: 688-95. https://doi.org/10.1203/01.PDR.0000085036.07561.9C
  29. Hurtado O, Lizasoain I, Fernandez-Tome P, Alvarez-Barrientos A, Leza JC, Lorenzo P, et al. TACE/ADAM17-TNF-alpha pathway in rat cortical cultures after exposure to oxygen-glucose deprivation or glutamate. J Cereb Blood Flow Metab 2002;22:576-85. https://doi.org/10.1097/00004647-200205000-00009
  30. Sauvageot CM, Stiles CD. Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol 2002;12:244-9. https://doi.org/10.1016/S0959-4388(02)00322-7
  31. Banker GA. Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 1980;209:809-10. https://doi.org/10.1126/science.7403847
  32. Mattson MP, Barger SW, Begley JG, Mark RJ. Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Methods Cell Biol 1995;46:187-216.
  33. Brewer GJ, Torricelli JR, Evege EK, Price PJ. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 1993;35:567-76. https://doi.org/10.1002/jnr.490350513
  34. Romera C, Hurtado O, Botella SH, Lizasoain I, Cardenas A, Fernandez- Tome P, et al. In vitro ischemic tolerance involves upregulation of glutamate transport partly mediated by the TACE/ADAM17-tumor necrosis factoralpha pathway. J Neurosci 2004;24:1350-7. https://doi.org/10.1523/JNEUROSCI.1596-03.2004
  35. De Cristobal J, Cardenas A, Lizasoain I, Leza JC, Fernandez-Tome P, Lorenzo P, et al. Inhibition of glutamate release via recovery of ATP levels accounts for a neuroprotective effect of aspirin in rat cortical neurons exposed to oxygen-glucose deprivation. Stroke 2002;33:261-7. https://doi.org/10.1161/hs0102.101299
  36. Bank HL. Rapid assessment of islet viability with acridine orange and propidium iodide. In Vitro Cell Dev Biol 1988;24:266-73. https://doi.org/10.1007/BF02628826
  37. Meng XF, Zou XJ, Peng B, Shi J, Guan XM, Zhang C. Inhibition of ethanol-induced toxicity by tanshinone IIA in PC12 cells. Acta Pharmacol Sin 2006;27:659-64. https://doi.org/10.1111/j.1745-7254.2006.00324.x
  38. Gao F, Yi J, Yuan JQ, Shi GY, Tang XM. The cell cycle related apoptotic susceptibility to arsenic trioxide is associated with the level of reactive oxygen species. Cell Res 2004;14:81-5. https://doi.org/10.1038/sj.cr.7290206
  39. Gwag BJ, Lobner D, Koh JY, Wie MB, Choi DW. Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vitro. Neuroscience 1995;68:615-9. https://doi.org/10.1016/0306-4522(95)00232-8
  40. He F, Wu LX, Liu FY, Yang LJ, Zhang Y, Zhang HF, et al. Protection of hepatocyte growth factor on neurons subjected to oxygen-glucose deprivation/ reperfusion. Sheng Li Xue Bao 2008;60:235-42.
  41. Tastekin A, Gepdiremen A, Ors R, Buyukokuroglu ME, Halici Z. Protective effect of L-carnitine against bilirubin-induced neuronal cell death. Brain Dev 2006;28:436-9. https://doi.org/10.1016/j.braindev.2006.01.004
  42. Grojean S, Koziel V, Vert P, Daval JL. Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons. Exp Neurol 2000;166:334-41. https://doi.org/10.1006/exnr.2000.7518
  43. Onem G, Aral E, Enli Y, Oguz EO, Coskun E, Aybek H, et al. Neuroprotective effects of L-carnitine and vitamin E alone or in combination against ischemia-reperfusion injury in rats. J Surg Res 2006;131:124-30. https://doi.org/10.1016/j.jss.2005.12.017
  44. Burlina AP, Sershen H, Debler EA, Lajtha A. Uptake of acetyl-L-carnitine in the brain. Neurochem Res 1989;14:489-93. https://doi.org/10.1007/BF00964865
  45. Kim CS, Roe CR. Maternal and fetal tissue distribution of L-carnitine in pregnant mice: low accumulation in the brain. Fundam Appl Toxicol 1992;19:222-7. https://doi.org/10.1016/0272-0590(92)90155-B
  46. Rebouche CJ. Carnitine function and requirements during the life cycle. FASEB J 1992;6:3379-86.
  47. Steiber AL, Weatherspoon LJ, Spry L, Davis AT. Serum carnitine concentrations correlated to clinical outcome parameters in chronic hemodialysis patients. Clin Nutr 2004;23:27-34. https://doi.org/10.1016/S0261-5614(03)00085-2
  48. De Vivo DC, Bohan TP, Coulter DL, Dreifuss FE, Greenwood RS, Nordli DR Jr, et al. L-carnitine supplementation in childhood epilepsy: current perspectives. Epilepsia 1998;39:1216-25. https://doi.org/10.1111/j.1528-1157.1998.tb01315.x
  49. Pons R, De Vivo DC. Primary and secondary carnitine deficiency syndromes. J Child Neurol 1995;10 Suppl 2:S8-24. https://doi.org/10.1177/08830738950100S104
  50. O'Donnell J, Finer NN, Rich W, Barshop BA, Barrington KJ. Role of L-carnitine in apnea of prematurity: a randomized, controlled trial. Pediatrics 2002;109:622-6. https://doi.org/10.1542/peds.109.4.622

Cited by

  1. Pharmacological Approaches in Newborn Infants with Hypoxic Ischemic Encephalopathy vol.20, pp.3, 2012, https://doi.org/10.5385/nm.2013.20.3.335
  2. Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia vol.5, pp.None, 2012, https://doi.org/10.1038/srep14507
  3. Metabolic Response of Pediatric Traumatic Brain Injury vol.31, pp.1, 2012, https://doi.org/10.1177/0883073814549244
  4. L-carnitine contributes to enhancement of neurogenesis from mesenchymal stem cells through Wnt/β-catenin and PKA pathway vol.242, pp.5, 2012, https://doi.org/10.1177/1535370216685432
  5. Neuroprotective effect of licochalcone A against oxygen‐glucose deprivation/reperfusion in rat primary cortical neurons by attenuating oxidative stress injury and inflammatory response via the S vol.119, pp.4, 2012, https://doi.org/10.1002/jcb.26477
  6. Thrombin Preconditioning Enhances Therapeutic Efficacy of Human Wharton’s Jelly-Derived Mesenchymal Stem Cells in Severe Neonatal Hypoxic Ischemic Encephalopathy vol.20, pp.10, 2012, https://doi.org/10.3390/ijms20102477
  7. Targeting Alzheimer’s disease with multimodal polypeptide-based nanoconjugates vol.7, pp.13, 2012, https://doi.org/10.1126/sciadv.abf9180
  8. BDNF-Overexpressing Engineered Mesenchymal Stem Cells Enhances Their Therapeutic Efficacy against Severe Neonatal Hypoxic Ischemic Brain Injury vol.22, pp.21, 2012, https://doi.org/10.3390/ijms222111395