DOI QR코드

DOI QR Code

THE EFFECT OF PHOTODYNAMIC THERAPY ON THE VIABILITY OF STREPTOCOCCUS MUTANS ISOLATED FROM ORAL CAVITY

광역동 치료가 구강 내에서 분리한 수종의 Streptococcus mutans의 생존력에 미치는 영향

  • Jung, Ji-Sook (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Park, Ho-Won (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Lee, Ju-Hyun (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Seo, Hyun-Woo (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Lee, Si-Young (Department of Microbiology and Immunology, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University)
  • 정지숙 (강릉원주대학교 치과대학 소아치과학교실) ;
  • 박호원 (강릉원주대학교 치과대학 소아치과학교실) ;
  • 이주현 (강릉원주대학교 치과대학 소아치과학교실) ;
  • 서현우 (강릉원주대학교 치과대학 소아치과학교실) ;
  • 이시영 (강릉원주대학교 치과대학 미생물학 및 면역학 교실 및 구강과학연구소)
  • Received : 2012.02.07
  • Accepted : 2012.07.31
  • Published : 2012.08.31

Abstract

Photodynamic therapy (PDT) is a technique that involves the activation of photosensitizer by light in the presence of tissue oxygen, resulting in the production of reactive radicals capable of inducing cell death. The aim of this study was to evaluate the effect of PDT on Streptococcus mutans in planktonic conditions, previously treated with different photosensitive concentrations of erythrosine, using halogen and LED curing unit as a light source. And we compared the effects of PDT on six strains of S. mutans isolated from oral cavity and reference strain. As a result, S. mutans was susceptible to the combination of hand held photopolymerizer (HHP) and erythrosine. The higher concentration of erythrosine in the presence of light irradiation induced greater effects in reduction of viability of S. mutans. Isolated S. mutans showed a significant reduction in bacterial counts of the groups submitted to PDT compared to the control groups. And they appeared to be similar or slightly lower antimicrobial effect compared with reference strain. However, the difference was not significant (p < 0.05). In conclusion, PDT using erythrosine as a photosensitizing agent and HHP as a light source could be an efficient option for diseases caused by S. mutans.

광역동 치료는 광감각제가 빛에 의해 활성화되면서 발생하는 화학 반응을 이용한 것으로, 치료 원리는 광화학 반응으로 자유 라디칼 및 반응성 산소가 생성되고 이 산물들에 의한 세포 독성으로 항균 효과를 가지게 되는 것이다. 이 연구의 목적은 치과 임상에서 널리 사용되는 광원(할로겐, LED)과 광감각제(erythrosine)를 이용하여, 치아 우식증과 연관된 세균인 Streptococcus mutans에 대한 광역동 치료의 항균 효과를 알아보고, 광감각제의 농도에 따른 광역동 치료의 효과를 평가하기 위함이다. 또한 임상 분리 균주와 표준 균주에 대한 광역동 치료의 효과를 비교해 보았다. 연구 결과, 표준 및 임상 분리 균주 모두 광감각제 처리 후 광조사를 시행한 군에서만 대조군에 비해 S. mutans의 유의한 감소가 나타났다. 또한 광조사를 시행한 군에서 첨가한 광감각제의 농도가 높을수록 S. mutans의 감소가 증가하는 것으로 나타났다. 표준 균주와 비교 시 임상 분리 균주에서는 표준 균주와 비슷하거나 약간 낮은 S. mutans의 감소가 나타났고, 이는 통계적으로 유의한 차이는 없었다(p < 0.05). 이상의 결과들로 보아 광감각제로 에리스로신의 사용과 광원으로 치과용 광중합기를 사용한 광역동 치료는 S. mutans 연관 질병에 대한 효과적인 치료 방법이 될 수 있을 것으로 사료된다.

Keywords

References

  1. Krasse B : Caries risk: a practical guide for an assessment and control. chicago: Quintessence Publishing, 1985.
  2. Smith DJ : Dental caries vaccines: prospects and concerns. Crit Rev Oral Biol Med, 13:335-349, 2002. https://doi.org/10.1177/154411130201300404
  3. Marsh PD : Are dental diseases examples of ecological catastrophes? Microbiology, 149:279-294, 2003. https://doi.org/10.1099/mic.0.26082-0
  4. Mikkelsen L, Jensen SB, Jakobsen J : Microbial studies on plaque from carious and caries-free proximal tooth surfaces in a population with high caries experience. Caries Res, 15:428-435, 1981. https://doi.org/10.1159/000260548
  5. Cox SD, Lassiter MO, Miller BS, Doyle RJ : A new mechanism of action of fluoride on streptococci. Biochim Biophys Acta, 1428:415-423, 1999. https://doi.org/10.1016/S0304-4165(99)00052-5
  6. Hirasawa M, Takada K : Susceptibility of Streptococcus mutans and Streptococcus sobrinus to cell wall inhibitors and development of a novel selective medium for S. sobrinus. Caries Res, 36:155-160, 2002. https://doi.org/10.1159/000059329
  7. Walker CB : The acquisition of antibiotic resistance in the periodontal microflora. Periodontol, 10:79-88, 1996. https://doi.org/10.1111/j.1600-0757.1996.tb00069.x
  8. Manch-Citron JN, Lopez GH, Dey A, et al. : PCR monitoring for tetracycline resistance genes in subgingival plaque following site-specific periodontal therapy. A preliminary report. J Clin Periodontol, 27:437-446, 2000. https://doi.org/10.1034/j.1600-051x.2000.027006437.x
  9. Feres M, Haffajee AD, Allard K, et al. : Antibiotic resistance of subgingival species during and after antibiotic therapy. J Clin Periodontol, 29:724-735, 2002. https://doi.org/10.1034/j.1600-051X.2002.290809.x
  10. Konopka K, Goslinski T : Photodynamic therapy in dentistry. J Dent Res, 86:694-707, 2007. https://doi.org/10.1177/154405910708600803
  11. Tran J, Olmsted III J : Intramolecular triplet-triplet energy transfer from xanthene dyes to an anthyrl substituent. J Photochem Photobiol A Chem, 71:45-49, 1993. https://doi.org/10.1016/1010-6030(93)87007-A
  12. Conlon KA, Berrios M : Light-induced proteolysis of myosin heavy chain by Rose Bengal-conjugated antibody complexes. J Photochem Photobiol B, 65:22-28, 2001. https://doi.org/10.1016/S1011-1344(01)00241-X
  13. Sharman WM, Allen CM, van Lier JE : Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today, 4:507-517, 1999. https://doi.org/10.1016/S1359-6446(99)01412-9
  14. Wood S, Metcalf D, Devine D, Robinson C : Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother, 57:680-684, 2006. https://doi.org/10.1093/jac/dkl021
  15. Park MS : Susceptibility of Streptococcus mutans to photodynamic therapy with erythrosine and dental halogen curing unit. Unpublished master's thesis, Gangneung-Wonju National University, 1-17, 2011.
  16. Zanin IC, Goncalves RB, Junior AB, et al. : Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J Antimicrob Chemother, 56:324-330, 2005. https://doi.org/10.1093/jac/dki232
  17. Metcalf D, Robinson C, Devine D, Wood S : Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation. J Antimicrob Chemother, 58:190-192, 2006. https://doi.org/10.1093/jac/dkl205
  18. Goulart TG, Souza SL, Tedesco AC : Ciancaglini P : Comparative study of methylene blue and erythrosine dyes employed is Photodynamic therapy for inactivation of planktonic and biofilm-cultivated Aggregatibacter actinomycetemcomitans. Photomed Laser Surg, 28:85-90, 2010.
  19. Wilson M : Photolysis of oral bacteria and its potential use in the treatment of caries and periodontal disease. J Appl Bacteriol, 75:299-306, 1993. https://doi.org/10.1111/j.1365-2672.1993.tb02780.x
  20. Wilson M, Dobson J, Sarkar S : Sensitization of periodontopathogenic bacteria to killing by light from a low-power laser. Oral Microbiol Immunol, 8:182-187, 1993. https://doi.org/10.1111/j.1399-302X.1993.tb00663.x
  21. Wilson M, Pratten J, Pearson GJ : Bacteria in supragingival plaque samples can be killed by lowpower laser light in the presence of a photosensitizer. J Appl Bacteriol, 78:569-574, 1995. https://doi.org/10.1111/j.1365-2672.1995.tb03101.x
  22. Sibata CH, Colussi VC, Oleinick NL, Kinsella TJ : Photodynamic therapy: a new concept in medical treatment. Braz J Med Biol Res, 33:869-880, 2000. https://doi.org/10.1590/S0100-879X2000000800002
  23. Wilson M : Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother, 42:13-28, 1998. https://doi.org/10.1093/jac/42.1.13
  24. Zvi M, Yeshayau N : New trends in photobiology bactericidal effects of photoactivated porphyrins - An alternative approach to antimicrobial drugs. J Photochem Photobiol B, 5:281-293, 1990. https://doi.org/10.1016/1011-1344(90)85044-W
  25. Tamietti BF, Machado AH, Maftoum-Costa M, et al. : Analysis of mitochondrial activity related to cell death after PDT with AlPCS4. Photomed Laser Surg, 25:175-179, 2007. https://doi.org/10.1089/pho.2007.2040
  26. Dougherty TJ, Gomer CJ, Henderson BW, et al. : Photodynamic therapy. J Natl Cancer Inst, 90:889-905, 1998. https://doi.org/10.1093/jnci/90.12.889
  27. Goulart RC, Bolean M, Paulino TP, et al. : Photodynamic therapy in planktonic and biofilm cultures of Aggregatibacter actinomycetemcomitans. Photomed Laser Surg, 28:53-60, 2010.
  28. Giusti JS, Santos-Pinto L, Pizzolito AC, et al. : Antimicrobial photodynamic action on dentin using a light-emitting diode light source. Photomed Laser Surg, 26:281-287, 2008. https://doi.org/10.1089/pho.2007.2149
  29. Marsh PD, Bevis RA, Newman HN : Antibacterial activity of some plaque-disclosing agents and dyes. Caries Res, 23:348-350, 1989. https://doi.org/10.1159/000261205
  30. Slupphaug G, Kavli B, Krokan HE : The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res, 531:231-251, 2003. https://doi.org/10.1016/j.mrfmmm.2003.06.002
  31. Mortensen A, Skibsted LH, Truscott TG : The interaction of dietary carotenoids with radical species. Arch Biochem Biophys, 385:13-19, 2001. https://doi.org/10.1006/abbi.2000.2172
  32. Costa AC, Chibebe Junior J, Pereira CA, et al. : Susceptibility of planktonic cultures of Streptococcus mutans to photodynamic therapy with a light-emitting diode. Braz Oral Res, 24:413-418, 2010. https://doi.org/10.1590/S1806-83242010000400007
  33. Costerton JW, Stewart PS, Greenberg EP : Bacterial biofilms: a common cause of persistent infections. Science, 284:1318-1322, 1999. https://doi.org/10.1126/science.284.5418.1318

Cited by

  1. Optimum Treatment Parameters for Photodynamic Antimicrobial Chemotherapy on <italic>Streptococcus mutans</italic> Biofilms vol.42, pp.2, 2015, https://doi.org/10.5933/JKAPD.2015.42.2.151
  2. by erythrosine concentration and LED irradiation times vol.38, pp.4, 2014, https://doi.org/10.11149/jkaoh.2014.38.4.227
  3. Antimicrobial Effect on Streptococcus mutans in Photodynamic Therapy using Different Light Source vol.45, pp.1, 2018, https://doi.org/10.5933/JKAPD.2018.45.1.82