DOI QR코드

DOI QR Code

Comparative Performance Evaluations of Eye Detection algorithm

눈 검출 알고리즘에 대한 성능 비교 연구

  • Received : 2011.10.07
  • Accepted : 2012.04.06
  • Published : 2012.06.30

Abstract

Recently, eye image information has been widely used for iris recognition or gaze detection in biometrics or human computer interaction. According as long distance camera-based system is increasing for user's convenience, the noises such as eyebrow, forehead and skin areas which can degrade the accuracy of eye detection are included in the captured image. And fast processing speed is also required in this system in addition to the high accuracy of eye detection. So, we compared the most widely used algorithms for eye detection such as AdaBoost eye detection algorithm, adaptive template matching+AdaBoost algorithm, CAMShift+AdaBoost algorithm and rapid eye detection method. And these methods were compared with images including light changes, naive eye and the cases wearing contact lens or eyeglasses in terms of accuracy and processing speed.

최근 생체 인식 분야나, HCI 분야 등에서 사람의 눈 영상 정보를 이용하여 홍채 인식을 하거나 시선위치 정보를 이용하는 연구가 활발히 진행 되고 있다. 특히 사용자의 편의성을 위한 원거리 카메라 기반시스템이 늘어나면서 눈 영상 촬영에 단순히 동공 중심 영역만 촬영 되는 것이 아니라, 눈썹, 이마, 피부영역 등 부정확한 검출을 일으킬 수 있는 요소가 포함되어 촬영되고 이러한 불필요한 요소들은 동공 중심영역의 검출 성능을 저하시킨다. 또한 앞서 얘기한 이용분야들은 실시간 환경에서 실행되는 시스템들로 정확한 검출 성능뿐만 아니라 빠른 실행시간도 요구 한다. 본 논문에서는 정확하고 빠른 눈동자 영역 검출을 위하여 기존에 가장 많이 사용하는 AdaBoost 눈 검출 알고리즘, 적응적 템플릿 정합+AdaBoost 알고리즘, CAMShift+AdBoost 알고리즘, rapid eye 검출 알고리즘에 대하여 분석하고, 조명변화와 콘택트 렌즈 및 안경 착용자와 미 착용자등 다양한 경우에 대해서 앞서 말한 알고리즘들을 적용하여 각 알고리즘 별로 정확도와 실행시간을 비교 분석하도록 한다.

Keywords

References

  1. C.W. Cho, J.W. Lee, E.C. Lee, and K.R. Park, "A Robust Gaze Tracking Method by using Frontal Viewing and Eye Tracking Cameras," Optical Engineering, Vol.48, No.12, pp. 127202-1-127202-15, 2009. https://doi.org/10.1117/1.3275453
  2. D. Cho, K.R. Park, D.W. Rhee, Y. Kim, and J. Yang, "Pupil and Iris Localization for Iris Recognition in Mobile Phones," Proc. of the ACIS International Conference on SNPD, pp. 197-201, 2006.
  3. D.S. Jeong, J.W. Hwang, B.J. Kang, K.R. Park, C.S. Won, D. Park, and J. Kim, "A New Iris Segmentation Method for Non-ideal Iris Images," Image and Vision Computing, Vol. 28, No.2, pp. 254-260, 2010. https://doi.org/10.1016/j.imavis.2009.04.001
  4. S. Amarng, R. Kumaran, and J. Gowdy, "Real Time Eye Tracking for Human Computer Interfaces," Proc. of IEEE International Conference on Multimedia and Expo., Vol. 3, pp. 557-560, 2003.
  5. J. Jo, S.J. Lee, H.G. Jung, K.R. Park, and J. Kim, "Vision-based Method for Detecting Driver Drowsiness and Distraction in Driver Monitoring System," Optical Engineering, Vol.50, No.12, pp. 127202-1-127202-24, 2011. https://doi.org/10.1117/1.3657506
  6. 임철수, 이양선, "웨이블렛 변환을 이용한 홍채 인식과 특징 추출," 멀티미디어학회논문지, 제7 권, 제2호, pp. 9-15, 2003.
  7. Z.H. Zhou and X. Geng, "Projection Functions for Eye Detection," Pattern Recognition, Vol. 37, No.5, pp. 1049-1056, 2004. https://doi.org/10.1016/j.patcog.2003.09.006
  8. Z. Zhu, K. Fujimura, and Q. Ji, "Real-Time Eye Detection and Tracking under Various Light Conditions," Proc. of ACM SIGCHI Symposium on Eye Tracking Reasearch and Applications, pp. 139-144, 2002.
  9. J. Huang and H. Wechsler, "Eye Detection using Optimal Wavelet Packets and Radial Basis Functions (RBFs)," International J ournal of Pattern Recognition and Artificial Intelligence, Vol.13 No.7, pp. 1009-1026, 1999. https://doi.org/10.1142/S0218001499000562
  10. R. Lienhart and J. Maydt, "An Extended Set of Haar-like Features for Rapid Object Detection," Proc. of International Conference on Image Processing, pp. 900-903, 2002.
  11. P. Viola and M.J. Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features," Proc. of IEEE Conference on Computer Vision and Pattern Recognition, Vol.1, pp. 511-518, 2001.
  12. P. Viola and M.J. Jones, "Robust Real-Time Face Detection," International Journal of Computer Vision, Vol.57, No.2, pp. 137-154, 2004. https://doi.org/10.1023/B:VISI.0000013087.49260.fb
  13. J.G. Allen, R.Y.D. Xu, and J.S. Jin, "Object Tracking using CAMShift Algorithm and Multiple Quantized Feature Spaces," Proc. of Pan-Sydney Area Workshop on Visual Information Processing(VIP2003), Conference in Research and Practice in Information Technology, Vol.36, pp. 3-7, 2003.
  14. M. Boyle, The Effects of Capture Conditions on the CAMSHIFT Face Tracker, Technical Report 2001-691-14, Department of Computer Science, University of Calgary, Alberta, Canada, 2001.
  15. D. Comaniciu, V. Ramesh, and P. Meer, "Real- Time Tracking of Non-Rigid Objects using Mean Shift," Proc. of IEEE Conference on Computer Vision and Pattern Recognition, Vol.2, pp. 142-149, 2000.
  16. G.R. Bradski, "Computer Vision Face Tracking for Use in a Perceptual User Interface," Proc. of IEEE Workshop on Applications of Computer Vision, pp. 214-219, 1998.
  17. B.S. Kim, H. Lee, and W.Y. Kim, "Rapid Eye Detection Method for Non-Glasses Type 3D Display on Portable Devices," IEEE Transactions on Consumer Electronics, Vol.56, No.4, pp. 2498-2505, 2010. https://doi.org/10.1109/TCE.2010.5681133

Cited by

  1. 초고속 R-CNN을 이용한 얼굴영상에서 눈 및 입술영역 검출방법 vol.9, pp.8, 2018, https://doi.org/10.15207/jkcs.2018.9.8.001