DOI QR코드

DOI QR Code

Pattern Classification of Retinitis Pigmentosa Data for Prediction of Prognosis

망막색소변성 데이터의 예후 예측을 위한 패턴 분류

  • Received : 2011.09.15
  • Accepted : 2012.03.18
  • Published : 2012.06.30

Abstract

Retinitis Pigmentosa(RP) is a common hereditary disease. While they have been normally living, those who have this symptom feel frustration and pain by the damage of visual acuity. At the national level, the loss of the economic activity due to the reduction of economically active population will be also greater. There is an urgent need for the base study that can provide the clinical prognosis information of RP disease. In this study, we suggest that it is possible to predict prognosis through the pattern classification of RP data. Statistical processing results through statistical software like SPSS(Statistical Package for the Social Service) were mainly applied for the conventional study in data analysis. However, machine learning and automatic pattern classification was applied to this study. SVM(Support Vector Machine) and other various pattern classifiers were used for it. The proposed method confirmed the possibility of prognostic prediction based on the result of automatically classified RP data by SVM classifier.

망막색소변성(RP: Retinitis Pigmentosa)이란 가장 흔한 유전성 망막질환이다. 정상적인 사회활동을 영위하던 사람들이 이 질병으로 시력이 손상되면서 좌절과 고통을 겪는다. 또한 국가적 차원에서 이들의 경제활동이 끊김에 따라 경제활동 인구 감소에 따른 손실 또한 크다고 하겠다. 이에 망막색소변성 질환에 대한 임상 예후 정보를 제공할 수 있는 연구기반이 절실히 요구되고 있다. 본 연구는 망막색소변성 데이터에 대한 패턴 분류를 통해 예후 예측이 가능함을 제안한다. 기존에는 주로 SPSS등을 활용한 통계 처리 결과가 데이터 분석에 적용되었다. 그러나 본 연구에서는 기계학습과 자동 패턴 분류를 실험하였다. SVM(Support Vector Machine)과 여러 다양한 패턴분류기들을 실험을 위해 사용하였다. 제안한 방법은 SVM 분류기에 의하여 RP 데이터가 자동적으로 분류된 결과를 바탕으로 예후 예측이 가능함을 확인하였다.

Keywords

References

  1. 유형곤, 유전성 망막질환, 서울대학교출판문화원, 서울, 2011.
  2. Michael A. Sandberg, Robert J. Brockhurst, Alexander R. Gaudio, and Eliot L.Berson "The Association between Visual Acuity and Central Retinal Thickness Retinitis Pigmentosa," IOVS, Vol.46, No.9, pp. 3349-3354, 2005.
  3. S Aizawa, Y Mitamura, T Baba, A Hagiwara, K Ogata, and S Yamamoto, "Correlation Between Visual Function and Photoreceptor Inner/Outer Segment Junction in Patients with Retinitis Pigmentosa," Eye, Vol.23, No. 2, pp. 304-308, 2009. https://doi.org/10.1038/sj.eye.6703076
  4. A Oishi, A Otani, M Sasahara, H Kojima, H Nakamura, M Kurimoto, and N Yoshimura "Photoreceptor Integrity and Visual Acuity in Cystoids Macular Oedema Associated with Retinitis Pigmentosa," Eye, Vol.23, No.6, pp. 1411-1416, 2009. https://doi.org/10.1038/eye.2008.266
  5. Michael A. Sandberg, Robert J. Brockhurst, Alexander R. Gaudio, and Eliot L. Berson "Visual Acuity is Related to Parafoveal Retinal Thickness in Patients with Retinitis Pigmentosa and Macular Cysts," IOVS, Vol. 49, No.10, pp. 4568-4572, 2008.
  6. Hyewon Chung, Jong-Uk Hwang, June-Gone Kim, and Young Hee Yoon, "Optical Coherence Tomography in the Diagnosis and Monitoring of Cystoid Macular Edema in Patients with Retinitis Pigmentosa," Retina, Vol.26, No.8, pp. 922-927, 2006. https://doi.org/10.1097/01.iae.0000250008.83779.23
  7. Ki-Kwang Lee and Chang Hee Han, "Medical Diagnosis Problem Solving Based on the Combination of Genetic Algorithms and Local Adaptive Operations," 지능정보연구, 제14권, 제2호, pp. 193-206, 2008.
  8. D. Nasien, S.S. Yuhaniz, and H. Haron, "Statistical Learning Theory and Support Vector Machines," Proceedings of the 2010 Second International Conference on Computer Research and Development, IEEE Computer Society, pp. 760-764, 2010.
  9. 강선경, 소인미, 김영운, 이상설, 정성태, "SVM과 LDA를 이용한 마커 검출 및 인식의 성능 향상," 멀티미디어학회논문지, 제10권, 제7호, pp. 923-933, 2007.
  10. Vladimir N. Vapnik, Statistical Learning Thoery, John Wiley & Sons, Hoboken, 1998.
  11. Vladimir N. Vapnik, "An Overview of Statistical Learning thoery," IEEE Trans. on Neural Networks, Vol.10, No.5, pp. 988-999, 1999. https://doi.org/10.1109/72.788640
  12. Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification(2nd ed.) , Wiley Interscience, New York, 2001.
  13. 오일석, 패턴인식, 교보문고, 서울, 2008.
  14. Chin-Wei Hsu,Chih-Chung Chang, and Chih- Jen Lin, A Practical Guide to Support Vector Classification, http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf, 2010.
  15. D. Meyer, F. Leisch, and K. Hornik, "The Support Vector Machine Under Test," Neurocom puting, Vol. 55, Issues. 1-2, pp. 169-186, 2003. https://doi.org/10.1016/S0925-2312(03)00431-4
  16. Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a Library for Support Vector Machines, http://www.csie.ntu.edu.tw/∼cjlin/libsvm, 2010.
  17. Chih-Wei Hsu and Chih-Jen Lin, "A Comparison of Methods for Multiclass Support Vector Machines," IEEE Trans. on Neural Networks, Vol.13, No.2, pp. 415-425, 2002. https://doi.org/10.1109/72.991427

Cited by

  1. 망막 질환 진단을 위한 베이지안 네트워크에 기초한 데이터 분석 vol.16, pp.3, 2012, https://doi.org/10.9717/kmms.2013.16.3.269