References
- I. Benedetti, V. Obukhovskii and P. Zecca, Controllability for impulsive semilinear functional differential inclusions with a non-compact evolution operator, Discuss. Math. Differ. Incl. Control Optim. 31(2011), 1-31.
- D.D. Bainov and P.S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific and Technical Group, England, 1993.
- J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, in: Lecture Notes in Pure and Applied Matyenath, vol. 60, Marcel Dekker, New York, 1980.
- K. Balachandran and N. Annapoorani, Existence results for impulsive neutral evolution integrodifferential equations with infinite delay, Nonlinear Anal. Hybrid Syst. 3(2009), 674-684. https://doi.org/10.1016/j.nahs.2009.06.004
- Y. K. Chang, A. Anguraj and M. Mallika Arjunan, Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Anal. Hybrid Syst. 2(2008), 209-218. https://doi.org/10.1016/j.nahs.2007.10.001
- Y. K. Chang, J. J. Nieto and W. S. Li, Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, J. Optim. Theory Appl. 142(2009), 267-273. https://doi.org/10.1007/s10957-009-9535-2
- Y. K. Chang, W. Li and J. J. Nieto, Controllability of evolution differential inclusions in Banach spaces, Nonlinear Anal. 67(2007), 623-632. https://doi.org/10.1016/j.na.2006.06.018
- C. Cuevas, E. Hernandez and M. Rabello, The existence of solutions for impulsive neutral functional differential equations, Comput. Math. Appl. 58(2009), 744-757. https://doi.org/10.1016/j.camwa.2009.04.008
- X. Fu, Controllability of abstract neutral functional differential systems with unbounded delay, Appl. Math. Comput. 151(2004), 299-314. https://doi.org/10.1016/S0096-3003(03)00342-4
- M. Guo, X. Xue and R. Li, Controllability of impulsive evolution inclusions with nonlocal conditions, J. Optim. Theory Appl. 120(2004), 355-374. https://doi.org/10.1023/B:JOTA.0000015688.53162.eb
- J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21(1978), 11-41.
- E. Hernandez M., M. Rabello and H. Henriaquez, Existence of solutions for impulsive partial neutral functional differential equations, J. Math. Anal. Appl. 331(2007), 1135-1158. https://doi.org/10.1016/j.jmaa.2006.09.043
- S. Ji, G. Li and M. Wang, Controllability of impulsive differential systems with nonlocal conditions, Appl. Math. Comput. 217(2011), 6981-6989. https://doi.org/10.1016/j.amc.2011.01.107
- M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter, 2001.
- V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer, Dordrecht, 1992.
- V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer, Dordrecht, 1999.
- V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
- Y. C. Liou, V. Obukhovskiinand J. C. Yao, Controllability for a class of degenerate functional differential inclusions in a Banach space, Taiwanese J. Math. 12(2008), 2179-2200. https://doi.org/10.11650/twjm/1500405142
- H. Monch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4(1980), 985-999. https://doi.org/10.1016/0362-546X(80)90010-3
- V. Obukhovski and P. Zecca, Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup, Nonlinear Anal. 70(2009), 3424-3436. https://doi.org/10.1016/j.na.2008.05.009
- J. Y. Park, K. Balachandran and G. Arthi, Controllability of impulsive neutral integrodifferential systems with infinite delay in Banach spaces, Nonlinear Anal. Hybrid Syst. 3(2009), 184-194. https://doi.org/10.1016/j.nahs.2008.12.002
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
- B. Radhakrishnan and K. Balachandran, Controllability of impulsive neutral functional evolution integrodifferential systems with infinite delay, Nonlinear Anal. Hybrid Syst. 5(2011), 655-670. https://doi.org/10.1016/j.nahs.2011.05.001
- B. Radhakrishnan and K. Balachandran, Controllability results for semilinear impulsive integrodifferential evolution systems with nonlocal conditions, J. Control Theory Appl. 10(1)(2012), 28-34. https://doi.org/10.1007/s11768-012-0188-6
- A. M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
- C.Travis and G.Webb, Existence and stability for partial functional differential equations,Trans. Amer. Math. Soc.,200(1974), 395-418. https://doi.org/10.1090/S0002-9947-1974-0382808-3
- J. Wang and W. Wei, Controllability of integrodifferential systems with nonlocal initial conditions in Banach spaces, J. Math. Sci.(N.Y.) 3(2011), 459-465.
- G. Webb, An abstract semilinear Volterra integrodifferential equations, Proc. Amer. Math. Soc., 69(1978), 255-260. https://doi.org/10.1090/S0002-9939-1978-0467214-4
- J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996.
- B. Yan, Boundary value problems on the half-line with impulses and infinite delay, J. Math. Anal. Appl. 259(2001), 94-114. https://doi.org/10.1006/jmaa.2000.7392
- R. Ye, Existence of solutions for impulsive partial neutral functional differential equation with infinite delay, Nonlinear Anal. 73(2010), 155-162. https://doi.org/10.1016/j.na.2010.03.008