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ABSTRACT. In this paper, we consider the controllability of a certain class of impulsive neutral
evolution differential equations in Banach spaces. Sufficient conditions for controllability are
obtained by using the Hausdorff measure of noncompactness and Monch fixed point theorem
under the assumption of noncompactness of the evolution system.

1. INTRODUCTION

Impulsive differential equations form an appropriate model for describing phenomena where
systems instantaneously change their state. Because of this reason they have numerous appli-
cations in several fields of applied sciences, such as Biology, Economics and Physics. There
has been a significant development in impulsive theory in recent years, especially in the area
of impulsive differential equations with fixed moments, see the monographs of Bainov and
Simeonov [2], Lakshmikantham et al. [17] and Samoilenko and Perestyuk [25].

The study of the existence and stability of the differential equations with delay was initiated
by Travis and Webb [26] and Webb [28]. In many areas of science there has been an increasing
interest in the investigation of functional differential equations, incorporating memory or after-
effect, that is, there is an effect of infinite delay on state equations. Related to this, we refer the
reader to Kolmanovskii and Myshkis [15, 16] and Wu [29]. Neutral differential equations arise
in many areas of applied mathematics and for this reason these equations have received much
attention in the last decades. For the literature relative to impulsive neutral differential systems
with infinite delay, we refer the reader to [4, 5, 8, 12, 30, 31].
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On the other hand, the concept of controllability is of great importance in mathematical
control theory. Controllability for differential systems in Banach spaces under the assumption
of compactness and noncompactness of the operator semigroups has been studied by many
authors [1, 6, 7, 9, 10, 13, 18, 20, 21, 23, 24, 27] by using various fixed point theorems. In
particular, by using Monch fixed point theorem, Guo et al. [10] established the sufficient
conditions for the controllability of the following class of impulsive evolution inclusions with
nonlocal conditions:

x′(t)−A(t)x(t) ∈ F (t, x(t)) +Bu(t), a.e. on T = [0, b],

∆x(ti) = Ii(x(ti)), i = 1, 2, · · · , s,
x(0) +M(x) = x0,

under the assumption of noncompactness of the semigroup generated by the evolution system.
Very recently, by using the same fixed point theorem, Ji et al. [13] extended the controllability
results of Guo et al. [10] into the following impulsive differential systems:

x′(t) = A(t)x(t) + f(t, x(t)) + (Bu)(t), a.e. on [0, b],

∆x|t=ti = Ii(x(ti)), i = 1, 2, . . . , s,

x(0) +M(x) = x0,

under the assumption that the evolution system generated by A(t) is equicontinuous.
Motivated by the above mentioned works [10, 13, 31], in this paper, we establish the suf-

ficient conditions for controllability of the impulsive neutral evolution differential equations
with infinite delay of the form:

d

dt

[
x(t)− g(t, xt)

]
+A(t)x(t) = f(t, xt) + (Bu)(t),

t ∈ J = [0, b], t ̸= tk, k = 1, 2, · · · ,m, (1.1)

∆x|t=tk = Ik(xtk), k = 1, 2, · · · ,m, (1.2)
x0 = φ ∈ B, (1.3)

where {A(t)}t∈J is a family of linear operators in a Banach space X generating an evolution
operator U : ∆ = {(t, s) ∈ [0, b] × [0, b] : 0 ≤ s ≤ t ≤ b} → L(X), here X is a
Banach space and L(X) is the Banach space of all bounded linear operators in X; the history
xt : (−∞, 0] → X, xt(θ) = x(t + θ), belongs to some abstract phase space B defined
axiomatically; f, g : J × B → X are appropriate functions; the points 0 = t0 < t1 < · · · <
tm < tm+1 = b are given and Ik : B → X, k = 1, 2, · · · ,m, are given impulsive functions;
the control function u(·) is considered in the space L2(J, V ), where V is a Banach space of
controls and B : V → X is a bounded linear operator.
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2. PRELIMINARIES

Let (X, ∥ · ∥) be a real Banach space. We denote C([0, b], X) the space of all X-valued
functions on [0, b] with norm ∥x∥ = sup{∥x(t)∥ : t ∈ [0, b]} and by L1([0, b], X) the space of
X-valued Bochner integrable functions on [0, b] with the norm ∥f∥L1 =

∫ b
0 ∥f(t)∥dt.

To describe appropriately our problems, we say that a function u : [σ, τ ] → X is a normal-
ized piecewise continuous function on [σ, τ ] if u is piecewise continuous and left continuous
on (σ, τ ]. By the symbol PC([σ, τ ];X), we denote the space of normalized piecewise con-
tinuous functions from [σ, τ ] into X . In particular, we denote the space PC formed by all
functions u : [0, b] → X such that u is continuous at t ̸= tk, u(t−k ) = u(tk) and u(t+k )
exists, for all k = 1, 2, · · · ,m. It is easy to see that PC is a Banach space with the norm
∥x∥PC = sups∈[0,b] ∥x(s)∥.

In this work we will employ an axiomatic definition for the phase space B which is similar
to those introduced by Hale and Kato [11] and it is appropriate to treat retarded impulsive
differential equations.

Let B will be a linear space of functions mapping from (−∞, 0] into X endowed with a
seminorm ∥ · ∥B, and satisfies the following axioms:

(A) If x : (−∞, σ+b] → X, b > 0, is such that x|[σ,σ+b] ∈ PC([σ, σ+b];X) and xσ ∈ B,
then for every t ∈ [σ, σ + b] the following conditions hold:
(i) xt ∈ B,

(ii) ∥x(t)∥ ≤ H∥xt∥B,
(iii) ∥xt∥B ≤ K(t − σ) sup{∥x(s)∥ : σ ≤ s ≤ t} +M(t − σ)∥xσ∥B, where H > 0

is a constant; K,M : [0,∞) → [1,∞), K is continuous, M is locally bounded,
and H, K, M are independent of x(·).

(B) The space B is complete.

For the family of linear operators {A(t) : t ∈ J}, we assume the following hypotheses.

(A1) The domain D(A(t)) of A(t) is dense in X and independent of t.
(A2) For each t ∈ J , the resolvent R(λ : A(t)) of A(t) exists for all λ with Reλ ≤ 0 and

there exists a constant M > 0 such that ∥R(λ : A(t))∥ ≤ M(|λ|+ 1)−1

(A3) There exist constants L > 0 and 0 < µ ≤ 1 such that ∥(A(t) − A(s))A−1(τ)∥ ≤
L|t− s|µ for t, s, τ ∈ J .

Under the assumptions (A1)− (A3), the family {A(t) : t ∈ J} generates an unique evolution
system {U(t, s) : 0 ≤ s ≤ t ≤ b} satisfying:

(a) There exists a positive constant M0 such that ∥U(t, s)∥ ≤ M0 for 0 ≤ s ≤ t ≤ b.
(b) For every v ∈ D(A(t)) and t ∈ J, U(t, s)v is differential with respect to s

on 0 ≤ s ≤ t ≤ b and ∂
∂sU(t, s)v = U(t, s)A(s)v.

Definition 2.1. A two parameter family of bounded linear operators U(t, s), 0 ≤ s ≤ t ≤ b
on X is called an evolution system if the following two conditions are satisfied:

(i) U(s, s) = I , U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t ≤ b;



96 S. SELVI AND M. MALLIKA ARJUNAN

(ii) (t, s) → U(t, s) is strongly continuous on ∆, i.e., for each x ∈ X ,
the function (t, s) ∈ ∆ → U(t, s)x is continuous.

More details about evolution system can be found in Pazy [22].

Definition 2.2. ([3]) Let E+ be the positive cone of an order Banach space (E,≤). A function
Φ defined on the set of all bounded subsets of the Banach space X with values in E+ is called
a measure of noncompactness(MNC) on X if Φ(coΩ) = Φ(Ω) for all bounded subsets Ω ⊆ X ,
where coΩ stands for the closed convex hull of Ω.

The MNC Φ is said:
(1) Monotone if for all bounded subsets Ω1, Ω2 of X we have:

(Ω1 ⊆ Ω2) ⇒ (Φ(Ω1) ≤ Φ(Ω2));
(2) Nonsingular if Φ({a} ∪ Ω) = Φ(Ω) for every a ∈ X , Ω ⊂ X;
(3) Regular if Φ(Ω) = 0 if and only if Ω is relatively compact in X .

One of the most examples of MNC is the noncompactness measure of Hausdorff β defined
on each bounded subset Ω of X by

β(Ω) = inf{ϵ > 0; Ω can be covered by a finite number of balls of radii smaller than ϵ}.
It is well known that MNC β enjoys the above properties and other properties see [3, 14]: For
all bounded subsets Ω,Ω1,Ω2 of X ,

(4) β(Ω1 +Ω2) ≤ β(Ω1) + β(Ω2), where Ω1 +Ω2 = {x+ y : x ∈ Ω1, y ∈ Ω2};
(5) β(Ω1 ∪ Ω2) ≤ max{β(Ω1), β(Ω2)};
(6) β(λΩ) ≤ |λ|β(Ω) for any λ ∈ R;
(7) If the map Q : D(Q) ⊆ X → Z is Lipschitz continuous with constant k, then

βZ(QΩ) ≤ kβ(Ω) for any bounded subset Ω ⊆ D(Q), where Z is a Banach space.

Lemma 2.1. ([3]) If W ⊂ C([a, b], X) is bounded and equicontinuous, then β(W (t)) is con-
tinuous for t ∈ [a, b] and

β(W ) = sup{β(W (t)), t ∈ [a, b]}, where W (t) = {x(t) : x ∈ W} ⊆ X.

Lemma 2.2. ([14]) Let {fn}∞n=1 be a sequence of functions in L1([0, b],R+). Assume that
there exist µ, η ∈ L1([0, b],R+) satisfying sup

n≥1
∥fn(t)∥ ≤ µ(t) and β({fn(t)}∞n=1) ≤ η(t) a.e.

t ∈ [0, b], then for all t ∈ [0, b], we have

β
({∫ t

0
U(t, s)fn(s)ds : n ≥ 1

})
≤ 2M0

∫ t

0
η(s)ds.

The following fixed-point theorem, a nonlinear alternative of Monch type, plays a key role
in our proof of controllability of the system (1.1)− (1.3).

Lemma 2.3. ([19, Theorem 2.2]) Let D be a closed convex subset of a Banach space X and
0 ∈ D. Assume that F : D → X is a continuous map which satisfies Monch’s condition, that
is (M ⊆ D is countable, M ⊆ co({0} ∪ F (M)) ⇒ M is compact ). Then F has a fixed point
in D.
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3. CONTROLLABILITY RESULTS

In this section, we present and prove the controllability results for the system (1.1)− (1.3).
First, we give the mild solution of the problem (1.1)− (1.3).

Definition 3.3. A function x : (−∞, b] → X is a mild solution of the initial value problem
(1.1)− (1.3), if x0 = φ ∈ B, x(·)|J ∈ PC and

x(t) = U(t, 0)[φ(0)− g(0, φ)] + g(t, xt) +

∫ t

0
U(t, s)A(s)g(s, xs)ds

+

∫ t

0
U(t, s)

[
f(s, xs) + (Bu)(s)

]
ds+

∑
0<tk<t

U(t, tk)Ik(xtk), t ∈ J.

Definition 3.4. The system (1.1)− (1.3) is said to be controllable on the interval J if for every
initial function φ ∈ B and x1 ∈ X , there exists a control u ∈ L2(J, V ) such that the mild
solution x(·) of (1.1)− (1.3) satisfies x(b) = x1.

We will study the problem (1.1)− (1.3) under the following hypotheses:
(H1) The evolution system {U(t, s)}(t,s)∈∆ generated by the family of linear operators

{A(t)}t∈J is equicontinuous. i.e., (t, s) → {U(t, s)x : x ∈ E} is equicontinuous for
t > 0 and for all bounded subsets E.

(H2) The function f : J × B → X satisfies:
(i) For a.e. t ∈ J , the function f(t, ·) : B → X is continuous and for all φ ∈ B, the

function f(·, φ) : J → X is strongly measurable.
(ii) For each positive integer r, there exists an integrable function αr : J → [0,+∞)

such that

sup
∥φ∥B≤r

∥f(t, φ)∥ ≤ αr(t), for a.e. t ∈ J,

and lim inf
r→∞

∫ b

0

αr(t)

r
dt = δ < +∞.

(iii) There exists integrable function η : J → [0,+∞) such that

β(f(t,D)) ≤ η(t) sup
−∞<θ≤0

β(D(θ)) for a.e. t ∈ J and D ⊂ B,

where D(θ) = {v(θ) : v ∈ D} and β is the Hausdorff MNC.
(H3) The linear operator W : L2(J, V ) → X is defined by

Wu =

∫ b

0
U(b, s)Bu(s)ds such that

(i) W has an invertible operator W−1 which take values in L2(J, V )\ kerW , and
there exist positive constants M1,M2 such that ∥B∥ ≤ M1 and ∥W−1∥ ≤ M2.

(ii) There is KW ∈ L1(J,R+) such that, for every bounded set Q ⊂ X ,

β(W−1Q)(t) ≤ KW (t)β(Q).
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(H4) There exists a positive constant M3 > 0 such that ∥A(t)A−1(0)∥ ≤ M3 for t ∈ J .
(H5) The function g : J×B → X is continuous and there exist positive constants L0, C1, C2

such that,
(i)

∥A(0)g(t, φ1)−A(0)g(t, φ2)∥ ≤ L0(∥φ1 − φ2∥B), ∀ t ∈ J, φ1, φ2 ∈ B,

(ii)

∥A(0)g(t, φ)∥ ≤ C1∥φ∥B + C2, ∀φ ∈ B, t ∈ J.

(H6) (i) There exist positive constants γk such that

∥Ik(φ1)− Ik(φ2)∥ ≤ γk(∥φ1 − φ2∥B), ∀ φ1, φ2 ∈ B

.
(ii) There exist continuous nondecreasing functions Lk : [0,+∞) → (0,+∞) such

that

∥Ik(φ)∥ ≤ Lk(∥φ∥B), ∀φ ∈ B,

and lim inf
ρ→∞

Lk(ρ)

ρ
= λk < +∞, where

m∑
k=1

λk = λ.

(H7) The following estimation holds true:
N + Ñ < 1 where,

N = Kb(1 +M0M1M2b
1
2 )
[
∥A−1(0)∥L0 +M0M3bL0 +M0

m∑
k=1

γk

]
,

Ñ = (2M0 + 4M2
0M1∥KW ∥L1)∥η∥L1 .

Remark 3.1. From (A3), we obtain ∥A(t)A−1(0)∥ ≤ L|b|µ+1. Thus we can choose a positive
constant M3 = L|b|µ + 1 satisfying (H4).

Theorem 3.1. Assume that the hypotheses (H1)− (H7) are satisfied. Then the system (1.1)−
(1.3) is controllable on J provided that,

Kb(1 +M0M1M2b
1
2 )
[
C1(∥A−1(0)∥+M0M3b) +M0(δ + λ)

]
< 1. (3.1)

Proof. Using the hypothesis (H3) for an arbitrary function x : (−∞, b] → X , define the
control

ux(t) = W−1
[
x1 − U(b, 0)[φ(0)− g(0, φ)]− g(b, xb)−

∫ b

0
U(t, s)A(s)g(s, xs)ds

−
∫ b

0
U(b, s)f(s, xs)ds−

m∑
k=1

U(b, tk)Ik(xtk)
]
(t).



CONTROLLABILITY RESULTS 99

We shall now show that using this control the operator defined by

Φx(t) =


φ(t), t ∈ (−∞, 0],

U(t, 0)[φ(0)− g(0, φ)] + g(t, xt) +
∫ t
0 U(t, s)A(s)g(s, xs)ds

+
∫ t
0 U(t, s)

[
f(s, xs) +Bux(s)

]
ds, t ∈ J

has a fixed point. This fixed point is then a solution of (1.1) − (1.3). Clearly, (Φx)(b) = x1,
which implies that the system (1.1)− (1.3) is controllable.
Suppose that x(t) = z(t) + y(t), t ∈ (−∞, b], where y : (−∞, 0] → X be a function defined
by y0 = φ and y(t) = U(t, 0)φ(0) on J . Then by the axioms of phase space, it is easy to
see that ∥zt + yt∥B ≤ (KbM0H + Mb)∥φ∥B + Kb∥z∥t, where ∥z∥t = sup0≤s≤t ∥z(s)∥,
Kb = sup0≤t≤bK(t) and Mb = sup0≤t≤bM(t).

Define S(b) =
{
z : (−∞, b] → X such that z0 = 0, z|J ∈ PC

}
be the space endowed

with the supremum norm ∥ · ∥b. Then(S(b), ∥ · ∥b) is a Banach space. Let Γ : S(b) → S(b) be
the operator defined by

(Γz)(t) =



0, t ∈ (−∞, 0],

−U(t, 0)g(0, φ) + g(t, zt + yt) +
∫ t
0 U(t, s)A(s)g(s, zs + ys)ds

+
∫ t
0 U(t, s)

[
f(s, zs + ys) +Buz(s)

]
ds+

∑
0<tk<t

U(t, tk)Ik(ztk + ytk),

t ∈ J,

where uz(·) ∈ L2(J, V ),

uz(t) = W−1
[
x1 − U(b, 0)[φ(0)− g(0, φ)]− g(b, zb + yb)

−
∫ b

0
U(t, s)A(s)g(s, zs + ys)ds−

∫ b

0
U(b, s)f(s, zs + ys)ds

−
m∑
k=1

U(b, tk)Ik(ztk + ytk)
]
(t).

Clearly, Γ is well defined and with values in S(b). It is easy to see that if z is a fixed point of
Γ, then z + y is a fixed point of Φ. So our aim is to find a fixed point of Γ.
Set Bq = {z ∈ S(b) : ∥z∥b ≤ q} for some q > 0. Clearly, Bq is a nonempty, closed, convex
and bounded set in S(b). Then for any z ∈ Bq,

∥zt + yt∥B ≤ (KbM0H +Mb)∥φ∥B +Kbq = q′. (3.2)

For better readability, we break the proof into sequence of steps.
Step 1: There exists q ≥ 1 such that Γ(Bq) ⊆ Bq.

Suppose the contrary. Then for each positive integer q, there exists z ∈ Bq such that
∥(Γz)(t)∥ > q for some t ∈ J . It follows from the hypotheses (H1) − (H6) and (3.2)
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we have

q < ∥(Γz)(t)∥
≤ M0∥A−1(0)∥(C1∥φ∥B + C2) + ∥A−1(0)∥(C1q

′ + C2) +M0M3b(C1q
′ + C2)

+M0

∫ t

0
αq′(s)ds+M0

m∑
k=1

Lk(q
′) +M0M1b

1
2 ∥uz∥L2 (3.3)

where ∥uz∥L2 ≤ M2

[
∥x1∥+M0[∥φ(0)∥+ ∥A−1(0)∥(C1∥φ∥B + C2)]

+ ∥A−1(0)∥(C1q
′ + C2) +M0M3b(C1q

′ + C2)

+M0

∫ b

0
αq′(s)ds+M0

m∑
k=1

Lk(q
′)
]

(3.4)

Hence by using (3.4) in (3.3), we have

q ≤ L̃+ (1 +M0M1M2b
1
2 )
[
∥A−1(0)∥C1q

′ +M0M3bC1q
′

+M0

∫ b

0
αq′(s)ds+M0

m∑
k=1

Lk(q
′)
]
, (3.5)

where L̃ is independent of q.
Noting that q′ = (KbM0H +Mb)∥φ∥B +Kbq → +∞ as q → +∞, we obtain by hypotheses
(H2)(ii) and (H6)(ii),

lim
q→+∞

inf
(∫ b

0 αq′(s)ds

q

)
= lim

q→+∞
inf

(∫ b
0 αq′(s)ds

q′
.
q′

q

)
= δKb,

lim
q→+∞

inf
(∑m

k=1 Lk(q
′)

q

)
= lim

q→+∞
inf

(∑m
k=1 Lk(q

′)

q′
.
q′

q

)
= λKb.

Dividing both sides of (3.5) by q and employing the above two equalities, we have that

1 ≤ Kb(1 +M0M1M2b
1
2 )
[
C1(∥A−1(0)∥+M0M3b) +M0(δ + λ)

]
.

This contradicts (3.1). Thus, there exists q ≥ 1 such that Γ(Bq) ⊆ Bq.
Step 2: Γ : S(b) → S(b) is continuous.

Let (zn)n∈N be a sequence in S(b) such that zn → z in S(b). Then by hypotheses (H2)(i),
(H5)(i) and (H6)(i), we can prove that f(s, zns + ys) → f(s, zs + ys), g(s, zns + ys) →
g(s, zs + ys) and Ik(z

n
tk
+ ytk) → Ik(ztk + ytk) uniformly on J .

Then by hypotheses (H2)(i, ii) and (H5)(i) with Dominated convergence theorem,
we conclude that ∫ t

0
U(t, s)f(s, zns + ys)ds →

∫ t

0
U(t, s)f(s, zs + ys)ds,
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and ∫ t

0
A(s)U(t, s)g(s, zns + ys)ds →

∫ t

0
A(s)U(t, s)g(s, zs + ys)ds, as n → ∞.

Which implies together with the continuity of the operators B,W−1 that,
we have ∥Γzn − Γz∥ → 0, as n → ∞. Hence Γ is continuous on S(b).
Step 3: The Monch condition holds:

To prove this, we decompose Γ in the form Γ = Γ1 + Γ2, for t ∈ J , where

(Γ1z)(t)

= −U(t, 0)g(0, φ) + g(t, zt + yt) +

∫ t

0
U(t, s)A(s)g(s, zs + ys)ds

+
∑

0<tk<t

U(t, tk)Ik(ztk + ytk) +

∫ t

0
U(t, ζ)BW−1

[
x1 − U(b, 0)[φ(0)− g(0, φ)]

− g(b, zb + yb)−
∫ b

0
U(b, s)A(s)g(s, zs + ys)ds

m∑
k=1

U(b, tk)Ik(ztk + ytk)
]
(ζ)dζ,

and

(Γ2)z(t)

=

∫ t

0
U(t, s)f(s, zs + ys)ds−

∫ t

0
U(t, ζ)BW−1

[ ∫ b

0
U(b, s)f(s, zs + ys)ds

]
(ζ)dζ.

Firstly, we prove that Γ1 is Lipschitz continuous.
Take z1, z2 ∈ S(b). Then by the axioms of phase space and hypotheses (H5)&(H6), we get
that

∥Γ1z1(t)− Γ1z2(t)∥
≤ ∥A−1(0)∥L0∥z1t − z2t∥B +M0M3bL0∥z1s − z2s∥B

+M0

m∑
k=1

γk∥z1tk − z2tk∥B +M0M1M2b
1
2

[
∥A−1(0)∥L0∥z1b − z2b∥B

+M0M3bL0∥z1s − z2s∥B +M0

m∑
k=1

γk∥z1tk − z2tk∥B
]

≤ Kb(1 +M0M1M2b
1
2 )
(
∥A−1(0)∥L0 +M0M3bL0 +M0

m∑
k=1

γk

)
∥z1 − z2∥b.

That is, ∥Γ1z1(t)− Γ1z2(t)∥b ≤ N∥z1 − z2∥b, (3.6)

where N = Kb(1 +M0M1M2b
1
2 )
(
∥A−1(0)∥L0 +M0M3bL0 +M0

m∑
k=1

γk

)
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Hence, Γ1 is Lipschitz continuous with Lipschitz constant N .
Next we prove that, Γ2 maps Bq into an equicontinuous family on J .

Indeed let t1, t2 ∈ J, 0 < t1 < t2. Then for arbitrary z ∈ Bq, we have

∥Γ2z(t2)− Γ2z(t1)∥

≤
∫ t1

0
∥[U(t2, s)− U(t1, s)]f(s, zs + ys)∥ds+

∫ t2

t1

∥U(t2, s)f(s, zs + ys)∥ds

+

∫ t1

0
∥[U(t2, ζ)− U(t1, ζ)]BW−1

[ ∫ b

0
U(b, s)f(s, zs + ys)

]
(ζ)∥dζ

+

∫ t2

t1

∥U(t2, ζ)BW−1
[ ∫ b

0
U(b, s)f(s, zs + ys)

]
(ζ)∥dζ.

Let Y (ζ) = BW−1
[∫ b

0
U(b, s)f(s, zs + ys)

]
(ζ), then

∥Γ2z(t2)− Γ2z(t1)∥

≤
∫ t1

0
∥U(t2, s)− U(t1, s)∥αq′(s)ds+

∫ t2

t1

∥U(t2, s)∥αq′(s)ds

+

∫ t1

0
∥U(t2, ζ)− U(t1, ζ)∥∥Y (ζ)∥dζ +

∫ t2

t1

∥U(t2, ζ)∥∥Y (ζ)∥dζ. (3.7)

By the equicontinuity property of {U(t, s) : (t, s) ∈ ∆} and the absolute continuity of the
Lebesgue integral, we can see that the right hand side of (3.7) tends to zero and independent
of z as t2 → t1. Hence, Γ2(Bq) is equicontinuous on J .
To prove the Monch condition, let W ⊆ Bq is countable and W ⊆ co({0} ∪ Γ(W )). We shall
show that β(W ) = 0. Without loss of generality, we may suppose that W = {zn}n∈N.
Then by the hypothesis (H2)(iii), (H3)(ii) and Lemma 2.2, we have

β
(
Γ2W (t)

)
= β

({
Γ2z

n(t)
}∞

n=1

)
≤ β

({∫ t

0
U(t, s)f(s, zns + ys)ds

}∞

n=1

)
+ β

({∫ t

0
U(t, ζ)BW−1

[ ∫ b

0
U(b, s)f(s, zns + ys)ds

]
(ζ)dζ

}∞

n=1

)
≤ 2M0

∫ b

0
η(s) sup

−∞<θ≤0
β
({

zn(s+ θ) + y(s+ θ)
}∞

n=1

)
ds

+ 2M0M1

∫ b

0
β
(
W−1

[{∫ b

0
U(b, s)f(s, zns + ys)ds

}∞

n=1

]
(ζ)

)
dζ
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≤ 2M0

∫ b

0
η(s)ds. sup

0≤τ≤s
β(zn(τ)) + 2M0M1

(∫ b

0
KW (ζ)dζ

)
× β

({∫ b

0
U(b, s)f(s, zns + ys)ds

}∞

n=1

)
,

≤ 2M0

∫ b

0
η(s)ds. sup

0≤τ≤s
β(W (τ)) + 4M2

0M1

(∫ b

0
KW (ζ)dζ

)
×

∫ b

0
η(s)ds. sup

0≤τ≤s
β(W (τ)),

= (2M0 + 4M2
0M1∥KW ∥L1)∥η∥L1 sup

0≤τ≤s
β(W (τ)).

That is, β(Γ2W (t)) ≤ Ñ sup
0≤τ≤s

β(W (τ)), (3.8)

where Ñ = (2M0 + 4M2
0M1∥KW ∥L1)∥η∥L1 .

Since Γ2 maps Bq into an equicontinuous family on J , Γ2(W ) is equicontinuous on J and so
W is equicontinuous on J . Then by Lemma 2.1, taking supremum on both sides of (3.8) over
J , we have

β(Γ2(W )) ≤ Ñβ(W ). (3.9)

By the property (7) of Definition 2.2,

β(Γ1(W )) ≤ Nβ(W ). (3.10)

Hence β(Γ(W )) ≤ β(Γ1(W )) + β(Γ2(W )) ≤ (N + Ñ)β(W ).

From the Monch condition, we get that

β(W ) ≤ β(co({0} ∪ Γ(W ))) = β(Γ(W )) ≤ (N + Ñ)β(W ).

By (H7), N + Ñ < 1, which implies that β(W ) = 0. In the view of Lemma 2.3, i.e., Monch
fixed point theorem, we conclude that Γ has a fixed point z in W . Then x = z + y is a fixed
point of Φ and thus the system (1.1)− (1.3) is controllable on [0, b]. �
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