DOI QR코드

DOI QR Code

Effect of Oxygen and Diborane Gas Ratio on P-type Amorphous Silicon Oxide films and Its Application to Amorphous Silicon Solar Cells

  • Park, Jin-Joo (School of Electronic Electrical Engineering, College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Young-Kuk (School of Electronic Electrical Engineering, College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Sun-Wha (School of Electronic Electrical Engineering, College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Youn-Jung (School of Electronic Electrical Engineering, College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Jun-Sin (School of Electronic Electrical Engineering, College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Hussain, Shahzada Qamar (Department of Energy Science, Sungkyunkwan University) ;
  • Balaji, Nagarajan (Department of Energy Science, Sungkyunkwan University)
  • Received : 2012.01.19
  • Accepted : 2012.06.12
  • Published : 2012.08.25

Abstract

We reported diborane ($B_2H_6$) doped wide bandgap hydrogenated amorphous silicon oxide (p-type a-SiOx:H) films prepared by using silane ($SiH_4$) hydrogen ($H_2$) and nitrous oxide ($N_2O$) in a radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) system. We improved the $E_{opt}$ and conductivity of p-type a-SiOx:H films with various $N_2O$ and $B_2H_6$ ratios and applied those films in regards to the a-Si thin film solar cells. For the single layer p-type a-SiOx:H films, we achieved an optical band gap energy ($E_{opt}$) of 1.91 and 1.99 eV, electrical conductivity of approximately $10^{-7}$ S/cm and activation energy ($E_a$) of 0.57 to 0.52 eV with various $N_2O$ and $B_2H_6$ ratios. We applied those films for the a-Si thin film solar cell and the current-voltage characteristics are as given as: $V_{oc}$ = 853 and 842 mV, $J_{sc}$ = 13.87 and 15.13 $mA/cm^2$. FF = 0.645 and 0.656 and ${\eta}$ = 7.54 and 8.36% with $B_2H_6$ ratios of 0.5 and 1% respectively.

Keywords

References

  1. K. Yoon, Y. Kim, J. Park, C. H. Shin, S. Baek, J. Jang, S. M. Iftiquar, J. Yi, Preparation and characterization of p-type hydrogenated amorphous silicon oxide film and its application to solar cell, J. of Non-Cryst. Solids 357 (2011) 2826-2832. https://doi.org/10.1016/j.jnoncrysol.2011.03.009
  2. A. Sarker, A. K. Barua, Development of high quilty p-type hydrogenated amorphous silicon oxide film and its use in improving the performance of single junction amorphous silicon solar cells, Jpn. J. Appl. Phys. 41 (2002) 765-769. https://doi.org/10.1143/JJAP.41.765
  3. J. Sritharathikhun, F. Jiang, S. Miyajima, A. Yamada, and M. Konagai, Optimization of p-Type Hydrogenated Microcrystalline Silicon Oxide Window Layer for High-Efficiency Crystalline Silicon Heterojunction Solar Cells, Jap. J. of Appl. Phys. 48 (2009) 101603 - 101603(5). https://doi.org/10.1143/JJAP.48.101603
  4. A. Sarker and A. K. Barua, Development of High Quality P-Type Hydrogenated Amorphous Silicon Oxide Film and Its Use in Improving the Performance of Single Junction Amorphous Silicon Solar Cells, Jpn. J. Appl. Phys. 41 (2002) 765-769. https://doi.org/10.1143/JJAP.41.765
  5. M. R. Yang, K. S. Chen, S. T. Hsu, T. A. Wu, Fabrication and characteristics of SiOx films by plasma chemical vapor deposition of tetramethylorthosilicate, Surf. Coat. Technol. 123 (2000) 204-209. https://doi.org/10.1016/S0257-8972(99)00521-6
  6. G. Lucovsky, J. Yang, S.S. Chao, J.E. Tyler, W. Czubatyj, Oxygenbonding environments in glow-deposited amorphous siliconhydrogen alloy films, Phys. Rev. B 28 (1983) 3225-3233. https://doi.org/10.1103/PhysRevB.28.3225
  7. A. Janotta, R. Janssen, M. Schmidt, T. Graf, M. Stutzmann, L. Gorgens, A. Bergmaier, G. Dollinger, C. Hammerl, S. Schreiber, B. Stritzker, Doping and its efficiency in $\alpha$-$SiO_{x}$:H, Phys. Rev. B 69 (2004) 115206-1-16. https://doi.org/10.1103/PhysRevB.69.115206
  8. M. Isomura, T. Kinoshita, S. Tsuda, Boron-compensation effect on hydrogenated amorphous silicon with oxygen and nitrogen impurities, Appl. Phys. Lett. 68 (1996) 1201-1203. https://doi.org/10.1063/1.115968
  9. I. Wagner, H. Stasiewski, B. Abeles, W.A. Landford, Surface states in P- and B-doped amorphous hydrogenated silicon, Phys. Rev. B 28 (1983) 7080-7086. https://doi.org/10.1103/PhysRevB.28.7080
  10. D. Das, S. M. Iftiquar, A.K. Barua, Wide optical-gap a-SiO:H films prepared by rf glow discharge, J. Non-Cryst. Solids 210 (1997) 148-154. https://doi.org/10.1016/S0022-3093(96)00597-2
  11. R. Carius, R. Fischer, E. Holzenkampfer, J. Stuke, Photoluminescence in the amorphous system $SiO_{x}$, J. Appl. Phys. 52 (1981), 4241-4243. https://doi.org/10.1063/1.329274
  12. I. Umezu. K. Miyamoto, N. Sakamoto, K. Maeda, Optical bond gap and Tauc gap in a-$SiO_{x}$:H and a-SiNx:H films, Jpn. J. Appl. Phys. 34 (1995) 1753-1758. https://doi.org/10.1143/JJAP.34.1753
  13. A. Hadjadj, P. St'ahel, P. R. i Cabarrocas, V. Paret, Y. Bounouh, J. C. Martin, Optimum doping level in a-Si:H and a-SiC:H materials, J. Appl. Phys. 83 (1998) 830- 836. https://doi.org/10.1063/1.366764
  14. T. Jana, S. Ghosh, S. Ray, Silicon oxide thin films prepared by a photo-chemical vapor deposition technique, J. Mater. Sci. 32 (1997) 4895-4900. https://doi.org/10.1023/A:1018616022092
  15. A.V. Shah, M. Vanecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, V. Terrazzoni- Daudrix, J. Bailat, Basic efficiency limits, recent experimental results and novel light-trapping schemes in a-Si:H, $\mu c$-Si:H and 'micromorph tandem' solar cells, J. Non-Cryst. Solids 338-340 (2004) 639-645. https://doi.org/10.1016/j.jnoncrysol.2004.03.074

Cited by

  1. Optimization of the window layer in large area silicon heterojunction solar cells vol.7, pp.15, 2017, https://doi.org/10.1039/C6RA26342A