DOI QR코드

DOI QR Code

연속적으로 누출되는 액체 풀의 확산에 관한 고차 섭동해

High-Order Perturbation Solutions of Liquid Pool Spreading with Continuous Spill

  • 김명배 (한국기계연구원 에너지플랜트안전연구실) ;
  • 도규형 (한국기계연구원 에너지플랜트안전연구실) ;
  • 한용식 (한국기계연구원 에너지플랜트안전연구실) ;
  • 최병일 (한국기계연구원 에너지플랜트안전연구실)
  • Kim, Myung-Bae (Division of Plant Safety Engineering, Korea Institute of Machinery & Materials) ;
  • Do, Kyu-Hyung (Division of Plant Safety Engineering, Korea Institute of Machinery & Materials) ;
  • Han, Yong-Shik (Division of Plant Safety Engineering, Korea Institute of Machinery & Materials) ;
  • Choi, Byung-Il (Division of Plant Safety Engineering, Korea Institute of Machinery & Materials)
  • 투고 : 2012.01.26
  • 심사 : 2012.07.23
  • 발행 : 2012.09.01

초록

연속적으로 누출되면서 원형으로 퍼져가고 있는 액체에 대한 모델에 대한 고차 섭동 해를 구하여 1차 섭동 해를 개선하였다. 일반적인 해를 얻기 위하여 무차원화된 지배방정식을 유도하고 무차원 지배 변수를 도출하였다. 무차원 증발계수를 섭동 변수로 이용하였다. 계산 결과 부피 및 확산 반경에 관해서 고차 섭동해가 1차 섭동 해를 개선시키고 있으며, 섭동해의 차수가 증가함 따라 오차를 감소시키는 경향을 보였다. 3차 섭동 해는 수치 해와 거의 일치하고 있어 3차 섭동해의 타당성을 보여주고 있다.

High-order perturbation solutions have been obtained for the simple physical model describing the liquid pool spreading with a continuous spill, and these are shown to improve over first-order perturbation solutions. The non-dimensional governing equations for the model are derived to obtain more general solutions. Non-dimensional parameters are sought as the governing parameters for the non-dimensional equations, and the non-dimensional evaporation rate is used as the perturbation parameter. The results show that the high-order solutions exhibit an improvement over the first-order solutions with respect to the pool volume as well as the spreading radius. In addition, as the order of the perturbation solutions increases, the difference between the numerical solutions and the perturbation solutions is significantly reduced. Finally, it is revealed that the third-order solutions are reasonable because they almost agree with the numerical solutions.

키워드

참고문헌

  1. Venetsanos, A. G. and Bartzis, J. G., 2005, "CFD Modelling of Large-Scale LH2 Spills in Open Environment," Proceedings of International Conference on Hydrogen Safety, Pisa, Italy, pp.125-136.
  2. Stein, W. and Ermak, D. L., 1980, "One- Dimensional Numerical Fluid Dynamics Model of the Spreading of Liquefied Gaseous Fuel (LGF) on Water," Lawrence Livermore National Laboratory, UCRL-53078.
  3. Verfondern, K. and Dienhart, B., 1997, "Experimental and Theoretical Investigation of Liquid Hydrogen Pool Spreading and Vaporization," Int. J. Hydrogen Energy, Vol. 22, No. 7, pp. 649-660. https://doi.org/10.1016/S0360-3199(96)00204-2
  4. Brandeis, J. and Kansa, E., 1983, "Numerical Simulation of Liquefied Fuel Spills: I. Instantaneous Release Into a Confined Area," Int. J. Num. Methods in Fluids, Vol. 3, pp.333-345. https://doi.org/10.1002/fld.1650030404
  5. Brandeis, J. and Ermak, D., 1983, "Numerical Simulation of Liquefied Fuel Spills:Ii. Instantaneous and Continous LNG Spills on an Unconfined Water Surface," Int. J. Num. Methods in Fluids, Vol. 3, pp. 347-361. https://doi.org/10.1002/fld.1650030405
  6. Briscoe, F. and Shaw, P., 1980, "Spread and Evaporation of Liquid," Prog. Energy Comb. Sci., Vol. 6, pp. 127-140. https://doi.org/10.1016/0360-1285(80)90002-7
  7. Kim, M., Do, K., Han, Y. and Choi, B., 2011, "First-Order Perturbation Solutions of Liquid Pool Spreading with Vaporization," Trans. of the KSME(B), Vol. 35, No. 3, pp. 287-291. https://doi.org/10.3795/KSME-B.2011.35.3.287
  8. Nayfeh, A., 1981, "Introduction to Perturbation Techniques," John Wiley and Sons, New York, p. 113.