DOI QR코드

DOI QR Code

다수의 전기장 분포가 생성되는 단일 미세유로를 이용한 폐암세포 전기천공 및 활성도 분석칩

Electroporation and Viability Monitoring Chip for Lung Cancer Cells in Single Channel with Multiple Electric Field Zones

  • 투고 : 2012.01.06
  • 심사 : 2012.07.18
  • 발행 : 2012.09.01

초록

본 논문에서는 다수의 전기장 분포가 생성되는 단일 미세유로를 이용한 폐암세포 전기천공 및 활성도 분석칩을 제안하였다. 종래의 세포 전기천공 분석칩은 다수의 전기장 분포를 형성하기 위해 다수의 전극패턴 또는 다수의 미세유로를 필요로 하여 구조가 복잡하였다. 반면, 제안된 세포 전기천공 및 활성도 분석칩은 한 쌍의 전극 사이에서 계단 형상으로 폭이 변화하는 단일 미세유로를 이용하여 다수의 전기장 분포를 형성함으로써 간단한 구조로 세포 전기천공 및 활성도를 분석할 수 있다. 제안된 세포 전기천공 및 활성도 분석칩은 0.3kV/cm에서 0.5kV/cm까지 5단계의 전기장이 발생되도록 설계하였다. A549와 H23의 두 종류의 비소세포 폐암세포주를 이용한 성능실험 결과, 활성을 유지하면서 전기천공된 세포의 비율이 0.4kV/cm의 전기장에서 각각 $26.6{\pm}0.7%$$51.4{\pm}3.0%$로 가장 높은 값을 보였다. 제안된 세포 전기천공 및 활성도 분석칩은 세포의 형질주입 연구를 위한 집적화된 세포칩으로 응용될 수 있다.

We present an electroporation and viability monitoring chip for lung cancer cells in a single channel with multiple electric field zones. Previous electroporation chips utilized multiple microchannels or electrodes to form multiple electric fields, thus resulting in complex structures. However, the present chip can generate multiple electric fields in a single stepwise microchannel between a pair of electrodes, thus achieving the analysis of both cell electroporation and viability with a simple structure. We demonstrate that the electric field of 0.4 kV/cm results in a maximum percentage of $51.4{\pm}3.0%$ and $26.6{\pm}0.7%$ of viable and electroporated human lung cancer cells, H23 and A549, respectively. The present chip has potential for use in integrated cell chips for transfection studies.

키워드

참고문헌

  1. Weaver, J. C., 2003, "Electroporation of Biological Membrandes from Multicellular to Nano Scales," IEEE Trans. Dielectr. Electr. Insul., Vol. 10, pp. 754-768. https://doi.org/10.1109/TDEI.2003.1237325
  2. Prasanna, G. L. and Panda, T., 1997, "Electroporation: Basic Principles Practical Considerations and Applications in Molecular Biology," Bioprocess Engineering, Vol. 16, pp. 261-264 https://doi.org/10.1007/s004490050319
  3. Serpersu, E. H. and Tsong, T. Y., 1984, "Activation of Electrogenic Rb+ Transport of (Na,K)-ATPase by an Electric Field," J Biol Chem, Vol. 259, pp. 7155-7162.
  4. Serpersu, E. H., Tsong, T. Y. and Kinosita, K., 1985, "Reversible and Irreversible Modification of Erythrocyte Membrane Permeability by Electric Field," Biochim Biophys Acta, Vol. 812, pp. 779-785. https://doi.org/10.1016/0005-2736(85)90272-X
  5. Friedrich, U., Stachowicz, N., Simm, A., Fuhr, G., Lucas, K. and Zimmermann, U., 1998, "High Efficiency Eletrotransfection with Aluminum Electrodes Using Microsecond Controlled Pulses," Bioelectrochem. Bioenerg., Vol. 47, pp. 103-111 https://doi.org/10.1016/S0302-4598(98)00163-9
  6. Fox, M. B., Esveld, D. C., Valero, A., Luttge, R., Mastwijk, H. C., Bartels, P. V., van den Berg, A. and Boom, R. M., 2006, "Electroporation of Cells in m Icrofludic Devices: A Review," Anal Bioanal Chem, Vol. 385, pp. 474-485. https://doi.org/10.1007/s00216-006-0327-3
  7. Gabriel, B. and Teissie, J., 1995, "Control by Electrical Parameters of Short- and Long-Term Cell Death Resulting from Electropermeabilization of Chinese Hamster Ovary Cells," Biochimica et Biophysica Acta, Vol. 1266, pp. 171-178. https://doi.org/10.1016/0167-4889(95)00021-J
  8. Rubinsky, B., 2007, "Irreversible Electroporation in Medicine," Technology in Cancer Research and Treatment, Vol. 6, pp. 255-259. https://doi.org/10.1177/153303460700600401
  9. Kim, J. A., Cho, K., Shin, Y. S., Jung, N. C. and Chang, J. K., 2007, "A Multi-Channel Electroporation Microchip for Gene Transfection in Mammalian Cells," Biosensors and Bioelectronics, Vol. 22, pp. 3273-3277. https://doi.org/10.1016/j.bios.2007.02.009
  10. Jain, T. and Muthuswamy, J., 2007, "Bio-Chip for Spatially Controlled Transfection of Nucleic Acidpayloads into Cells in a Culture," Lab chip, Vol.7, pp. 1004-1011. https://doi.org/10.1039/b707479d
  11. Lee, S. W. and Tai, Y. C., 1999, "A Micro Cell Lysis Device," Sensor and Actuators A, Vol.73, pp.74-79. https://doi.org/10.1016/S0924-4247(98)00257-X
  12. Frida, F.R., Farre, C., Brennan, C., Weber, S. G., Nolkrantz, K., Jardemark, K., Chiu, D. T. and Orwar, O., 2000, "Characterization of Single-Cell Electroporation by Using Patch-Clamp and Fluorescence Microscopy," Biophysical Journal, Vol. 79, pp. 1993-2001. https://doi.org/10.1016/S0006-3495(00)76447-2
  13. Choi, Y. S., Kim, H. B., Kwon, G. S. and Park, J. K., 2009, "On-Chip Testing Device for Electrochemotherapeutic Effects on Human Breast Cells," Biomed Microdevices, Vol.11, pp. 151-159. https://doi.org/10.1007/s10544-008-9220-5
  14. Khine, M., Lau, A., Ionescu-Zanetti, C., Seo, J. and Lee, L. P., 2005, " A Single Cell Electroporation Chip," Lab Chip, Vol. 5, pp. 38-43. https://doi.org/10.1039/b408352k
  15. Lee, D. W. and Cho, Y. H., 2007, "A Continuous Electrical Cell Lysis Device Using a Low DC Voltage for a Cell Transport and Rupture," Sensors and Acturators B, Vol.124, pp. 84-89. https://doi.org/10.1016/j.snb.2006.11.054
  16. Bao, N., Le, T. T., Cheng, J. X. and Lu, C., 2010, "Microfluidic Electroporation of Tumor and Blood Cells: Observation of Nucleus Expansion and Implications on Selective Analysis and Purging of Circulating Tumor Cells," Integr Biol., Vol. 2, pp. 113-120. https://doi.org/10.1039/b919820b
  17. Sanfilippo, S., Canis, M., Ouchchane, L., Botchorishvili, R., Artonne, C., Janny, L. and Brugnon, F., 2011, "Viability Assessment of Fresh and Frozen/Thawed Isolated Human Follicles: Reliability of Two Methods (Trypan Blue and Calcein AM.Ethidiym Homodimer-1)," J Assis Reprod Genet.,Vol. 28, pp. 1151-1156. https://doi.org/10.1007/s10815-011-9649-y