DOI QR코드

DOI QR Code

Numerical Study of Heat and Mass Transfer Characteristics in Microchannel Steam Methane Reforming Reactor

마이크로채널 메탄 수증기 개질 반응기의 열 및 물질 전달 특성에 관한 수치해석 연구

  • Received : 2011.01.21
  • Accepted : 2012.06.28
  • Published : 2012.09.01

Abstract

A numerical study of a microchannel steam methane reforming reactor has been performed to understand the characteristics of heat and mass transfer. The integration of Rh-catalyzed steam methane reforming and Pt-catalyzed methane combustion has been simulated. The reaction rates for chemical reactions have been incorporated into the simulation. This study investigated the effect of contact time, flow pattern (parallel or counter), and channel size on the reforming performance and temperature distribution. The parallel and counter flow have opposite temperature distribution, and they show a different type of reaction rate and species mole fraction. As the contact time decreases and channel size increases, mass transfer between the catalyst layer and the flow is limited, and the reforming performance is decreased.

마이크로채널 메탄 수증기 개질 반응기의 열 및 물질 전달 특성을 이해하기 위한 수치해석 연구를 수행하였다. Rh-촉매의 메탄 수증기 개질 반응과 Pt-촉매의 메탄 연소 반응을 함께 모델링하였다. 화학 반응의 반응 속도를 해석 모델에 적용하였다. 접촉시간, 평행류 대향류 등 유동 패턴, 채널 크기 등이 개질 성능과 온도 분포에 미치는 영향을 관찰하였다. 평행류와 대향류는 서로 반대되는 온도 분포를 갖게 되고, 그로 인해 서로 다른 반응 속도와 화학종 몰분율을 나타낸다. 접촉시간이 짧아지고 채널 크기가 증가할수록 촉매층과 혼합물 유동 사이의 물질 전달이 제한되어 개질 성능은 감소하게 된다.

Keywords

References

  1. Sharma, P. O., Abraham, M. A. and Chattopadhyay, S., 2007, "Development of a Novel Metal Monolith Catalyst for Natural Gas Steam Reforming," Ind. Eng. Chem. Res., Vol. 46, pp. 9053-9060. https://doi.org/10.1021/ie070373+
  2. Armor, J. N., 1999, "The Multiple Roles for Catalysis in the Production of $H_{2}$," Appl. Catal. A Gen., Vol. 176, No. 2, pp. 159-176. https://doi.org/10.1016/S0926-860X(98)00244-0
  3. Tonkovich, A.Y., Perry, S., Wang, Y., Qiu, D., LaPlante, T. and Rogers, W. A., 2004, "Microchannel Process Technology for Compact Methane Steam Reforming," Chem. Eng. Sci., Vol. 59, pp. 4819-4824. https://doi.org/10.1016/j.ces.2004.07.098
  4. Wang, Y., Chin, Y., Rozmiarek, R. T., Johnson, B. R., Gao, Y., Watson, J. M., Tonkovich, A. Y. and Vanderwiel, D. P., 2004, "Highly Active and Stable $Rh/MgOAl_{2}O_{3}$ Catalysts for Methane Steam Reforming," Catal. Today, Vol. 98, No. 4, pp. 575-581. https://doi.org/10.1016/j.cattod.2004.09.011
  5. Tonkovich, A. Y., Yang, B., Perry, S. T., Fitzgerald, S. P. and Wang, Y., 2007, "From Seconds to Milliseconds to Microseconds Through Tailored Microchannel Reactor Design of a Steam Methane Reformer," Catal Today, Vol. 120, No. 1, pp. 21-29. https://doi.org/10.1016/j.cattod.2006.07.022
  6. Zhai, X., Ding, S., Cheng, Y., Jin, Y. and Cheng, Y., 2010, "CFD Simulation with Detailed Chemistry of Steam Reforming of Methane for Hydrogen Production in an Integrated Micro-Reactor," Int. J. Hydrogen Energy, Vol. 35, No. 11, pp. 5383-5392. https://doi.org/10.1016/j.ijhydene.2010.03.034
  7. Arzamendi, G., Diéguez, P. M., Montes, M., Odriozola, J. A., Sousa-Aguiar, E. F. and Gandí, L. M., 2009, "Methane Steam Reforming in a Microchannel Reactor for GTL Intensification: A Computational Fluid Dynamics Simulation Study," Chemical Engineering Journal, Vol. 154, pp. 168-173 https://doi.org/10.1016/j.cej.2009.01.035
  8. Kolaczkowski, S.T. and Serbetcioglu, S., 1996, "Development of Combustion Catalysts for Monolith Reactors: A Consideration of Transport Limitations," Applied Catalysis A: General, Vol. 138, No. 2, pp. 199-214 https://doi.org/10.1016/0926-860X(95)00296-0
  9. ANSYS, 2009, $ANSYS^{(R)}$ Fluent 12.0 User's Guide.
  10. McGee, H. A., 1991, Molecular Engineering, McGraw-Hill, New York