DOI QR코드

DOI QR Code

10가지 식용식물 추출물의 가바, 글루탐산 함량, 아세틸콜린에스테라제 억제 및 라디컬 소거능 비교

A Comparative Study of GABA, Glutamate Contents, Acetylcholinesterase Inhibition and Antiradical Activity of the Methanolic Extracts from 10 Edible Plants

  • 정연섭 (계명대학교 식품가공학과) ;
  • 박성진 (계명대학교 식품가공학과) ;
  • 김지은 (계명대학교 식품가공학과) ;
  • 양선아 (계명대학교 전통미생물자원개발및산업화연구센터) ;
  • 박정현 (계명대학교 전통미생물자원개발및산업화연구센터) ;
  • 김정현 (금오공과대학교 응용화학과) ;
  • 지광환 (금오공과대학교 응용화학과) ;
  • 이삼빈 (계명대학교 식품가공학과) ;
  • 이인선 (계명대학교 식품가공학과)
  • Jung, Yeon-Seop (Department of Food Science and Technology, Keimyung University) ;
  • Park, Sung-Jin (Department of Food Science and Technology, Keimyung University) ;
  • Kim, Ji-Eun (Department of Food Science and Technology, Keimyung University) ;
  • Yang, Seun-Ah (The Center for Traditional Microorganism Resources, Keimyung University) ;
  • Park, Jung-Hyun (The Center for Traditional Microorganism Resources, Keimyung University) ;
  • Kim, Jung-Hyun (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Jhee, Kwang-Hwan (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Lee, Sam-Pin (Department of Food Science and Technology, Keimyung University) ;
  • Lee, In-Seon (Department of Food Science and Technology, Keimyung University)
  • 투고 : 2012.04.18
  • 심사 : 2012.07.05
  • 발행 : 2012.08.31

초록

본 실험에서는 식용 가능한 10종 식물의 인지기능 개선 관련 효능을 검토하기 위하여 추출물의 AChE 억제활성과 DPPH, ABTS 라디컬 소거활성을 비교하였으며, GABA 및 글루탐산의 함량을 측정하였다. 그 결과, GABA 함량은 오미자 추출물에서 14.8mg/g으로 가장 높게 나타났으며, 천궁과 하수오 추출물에서도 각각 3.1 mg/g과 5.4 mg/g으로 비교적 높게 나타났다. AChE 저해활성은 오미자, 헛개나무, 측백엽, 가시오가피 추출물이 1 mg/mL에서 각각 33, 26.6, 20.7%, 그리고 17.8%의 저해율을 나타내어 10종 추출물 중 높게 나타났다. 또한, DPPH 및 ABTS에 대한 라디컬 소거능은 헛개나무, 측백엽, 가시오가피, 오미자 추출물에서 매우 강하게 나타났다. 글루타민산은 석창포 외의 9가지 추출물에서 고르게 존재하는 것으로 나타났다. 본 연구에서 검토한 10종 추출물 중 특히 오미자는 뇌의 대사를 향상시켜 뇌기능을 촉진시키는 GABA의 함량이 높은 것과 함께 AChE 억제 활성도 가장 높았으며, 라디컬 소거효과도 비교적 높게 나타나 뇌기능 개선을 위한 뛰어난 소재로 나타났다. 또한, AChE 억제 활성과 라디컬 소거능이 높게 나타난 헛개나무, 가시오가피 및 측백엽의 인지기능 개선을 위한 기능성식품 소재로서의 활용 가능성을 확인하였다. 본 연구 결과를 통하여 인지기능 개선 효능과 관련하여 사용되는 지표 중 AChE 억제 활성과 식물 추출물의 라디컬 소거활성과의 상관관계를 나타내는 경향을 확인하였으며, GABA 및 체내에서 GABA로 전환되는 글루탐산 함량이 직접적인 AChE 억제 효과를 나타내지는 않았다.

In order to investigate the efficacies for cognitive function of edible plants, we measured the inhibitory effects of acetylcholinesterase(AChE) activity, radical scavenging activities, and the contents of GABA and glutamate in the plant extracts. Among the plant extracts, Schizandra chinensis contained the highest GABA 14.8 mg/g and the extracts of Cnidium officinale and Polygonum multiflorum also had a relatively high GABA. On the other hand, plant extracts except, Acorus gramineus, showed similar glutamate contents. S. chinensis, Hovenia dulcis, Thuja orientalis, and Eleutherococcus senticosus exhibited high inhibition against AChE activities at about 18-33% at 1 mg/mL. In addition, strong radical scavenging activities were also detected in those extracts which showed high AChE inhibition. Taken together, H. dulcis, T. orientalis, E. senticosus, and S. chinensis could be effective resources for enhancing cognitive function. Further, it was suggested that the AChE inhibitory activities of plant extracts might be related to antioxidative activity.

키워드

참고문헌

  1. Oh SK. Neurotransmitters and Brain Disease. Shinil Books company. Seoul, Korea. pp. 160, 345-364 (2005)
  2. Selkoe DJ. Physiological production of the beta-amyloid protein and the mechanism of Alzheimer's disease. Trends Neurosci. 16: 403-409 (1993) https://doi.org/10.1016/0166-2236(93)90008-A
  3. Hendrie HC. Epidomiology of Alzheimer's disease. Geriatrics 52(suppl 2): S4-S8 (1997)
  4. Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO. Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. J. Am. Med. Assoc. 262: 2551-2556 (1989) https://doi.org/10.1001/jama.1989.03430180093036
  5. Shudo K, Kagechika H, Yamazaki N, Igarashi M, Tateda C. A synthetic retinoid Am80 (tamibarotene) rescues the memory deficit caused by scopolamine in a passive avoidance paradigm. Biol. Pharm. Bull. 27:1887-1899 ( 2004) https://doi.org/10.1248/bpb.27.1887
  6. Tanabe F, Miyasaka N, Kubita T, Aso T. Estrogen and progesterone improve scopolamine-induced impairment of spatial memory. J. Med. Dent. Sci. 51: 89-98 (2004)
  7. Amentaa F, Parnettib L, Gallaib V, Wallinc A. Treatment of cognitive dysfunction associated with Alzheimer's disease with cholinergic precursors. Ineffective treatments or inappropriate approaches?. Mech. Ageing Dev. 122: 2025-2040 (2001) https://doi.org/10.1016/S0047-6374(01)00310-4
  8. Fayuk D, Yakel JL. Regulation of nicotinic acetylcholine receptor channel function by acetylcholinesterase inhibitors in rat hippocampal CA1 interneurions. Mol. Pharmacol. 66: 658-666 (2004) https://doi.org/10.1124/mol.104.000042
  9. Liu Q, Zhao B. Nicotine attenuates $\beta$-amyloid peptide-induced neurotoxicity, free radical and calcium accumulation in hippocampal neuronal cultures. Brit. J. Pharmacol. 141: 746-754 (2004) https://doi.org/10.1038/sj.bjp.0705653
  10. Oh SH, Kim SH, Moon YJ, Choi WG. Changes in the levels of $\gamma$-aminobutyric acid and some amino acids by application of a glutamic acid solution for the germination of brown rice. Korean J. Biotechnol. Bioeng. 17: 49-53 (2002)
  11. Xinga SG, Jun YB, Hau ZW, Liang LY. Higher accumulation of $\gamma$-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. Roots. Plant Physiol. Bioch. 45: 560-566 (2007) https://doi.org/10.1016/j.plaphy.2007.05.007
  12. Chung HJ, Jang SH, Cho HY, Lim ST. Effects of steeping and anaerobic treatment on GABA ($\gamma$-aminobutyric acid) content in germination waxy hull-less barely. LWT-Food Sci. Technol. 42: 1712-1716 (2009) https://doi.org/10.1016/j.lwt.2009.04.007
  13. Narayan VS, Nair PM. Metabolism, enzymology, and possible roles of 4-aminobutyrate in higher plants. Phytochemistry 39: 367-375 (1990)
  14. Omri MT, Tano J, Okamoto T, Tshsjida T, Higuchi MM. Effect of anaerobically treated tea (Gabaron tea) on blood pressure of spontaneously hypertensive rat. Nippon Nigeikagaku Kaishi 61: 1449-1451 (1987) https://doi.org/10.1271/nogeikagaku1924.61.1449
  15. Shelp BJ, Bown AW, McLean MD. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 4: 446-452 (1999) https://doi.org/10.1016/S1360-1385(99)01486-7
  16. Kim JS, Kim YS, Kim SK, Heor JH, Lee BH, Choi BW, Ryu GS, Park EK, Zee OP, Ryu SY. Inhibitory effects of some herbal extracts on the Acetylcholinesterase (AChE) in vitro. Korean J. Pharmacogn. 33: 211-218 (2002)
  17. Lim SD, Kim KS. Effects and utilization of GABA. Korean J. Dairy Sci. Technol. 27: 45-51 (2009)
  18. Zhang D, Bown AW. The rapid determination of $\gamma$-aminobutyric acid. Phytochemistry 44: 1007-1009 (1996)
  19. Marfey P. Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res. Commun. 19: 591-596 (1984)
  20. Ellman GL, Courtney KD, Andres Vjr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 4: 88-95 (1961)
  21. Jason F. Sandahl, Jeffrey J, Jenkins. Pacific steelhead (Oncorhynchus mykiss) exposed to chlorpyrifos: Benchmark concentration estimates for acetylcholinesterase inhibition. Environ. Toxicol. Chem. 21: 2452-2458 (2002) https://doi.org/10.1897/1551-5028(2002)021<2452:PSOMET>2.0.CO;2
  22. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181:1198-1200 (1958)
  23. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical. Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  24. Bown AW, Shelp BS. The metabolism and function of $\gamma$-aminobutyric acid. Plant Physiol. 115: 1-5 (1997) https://doi.org/10.1104/pp.115.1.1
  25. Difiglia M, Aronin N. Synaptic interactions between GABAergic neurons and trieminothalamic cell in the rat trigeminal Nucleus Caudalis. Synapse 6: 358-363 (1990) https://doi.org/10.1002/syn.890060408
  26. Ryu BH, Jeon JH. Continous production of $\gamma$-aminobutyric acid by immobilization of Lactobacillus brevis. J. Life Sci. 14: 167-173 (2004) https://doi.org/10.5352/JLS.2004.14.1.167
  27. Kum JS, Choi BK, Lee HY, Park JD. Physicochemical properties of germinated brown rice. Korean J. Food Preserv. 11: 182-188 (2004)
  28. Han JT, Ahn EM, Park JK, Cho SW, Heon SG, Jang JS, Kim CK, Choi SY, Baek NI. Isolation of anticonvulsant compounds from the fruits of Schizandra chinensis Baili. Agric. Chem. Biotechnol. 43: 72-77 (2000)
  29. Vincenzo NT. Acetylcholinesterase in Alzheimer's disease. Mech. Ageing Dev. 122: 1961-1969 (2001) https://doi.org/10.1016/S0047-6374(01)00309-8
  30. Montine TJ, Diana NM, Quinn JF, Beal MF, Markesbery WR, Roberts LJ, Morrow JD. Lipid peroxidation in aging brain and Alzhemier's disease. Free Radical Bio. Med. 33: 620-626 (2002) https://doi.org/10.1016/S0891-5849(02)00807-9
  31. Floyd RA, Hensley K. Oxidative stress in brain aging:Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23: 795-807 (2002) https://doi.org/10.1016/S0197-4580(02)00019-2
  32. Kim HK, Kim YE, Do JR, Lee YC, Lee BY. Antioxidative activity and physiological activity of some Korean medicinal plant. Korean J. Food Sci. 27: 80-86 (1995)
  33. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. Total polyphenol contents and antioxidant activities of methanol extract from vegetable produced in Ullung Island. J. Korean Food Sci. 37: 233-240 (2005)

피인용 문헌

  1. Evaluation of the Antioxidant Activity and Physiological Functionality of Baegilju vol.23, pp.12, 2013, https://doi.org/10.5352/JLS.2013.23.12.1525
  2. Comparison of the Nutrient Composition and Quality of the Root of Allium hookeri Grown in Korea and Myanmar vol.46, pp.5, 2014, https://doi.org/10.9721/KJFST.2014.46.5.544
  3. Memory-improving Effects of Fermented Sea Tangle Saccharina japonica in Normal Mice vol.49, pp.2, 2016, https://doi.org/10.5657/KFAS.2016.0131
  4. Chemical Properties and Nitrite Scavenging and Acetylcholinesterase Inhibitory Activities from Salicornia herbaciea Seed vol.28, pp.6, 2013, https://doi.org/10.7841/ksbbj.2013.28.6.372
  5. Analysis of Nutritional Components, Volatile Properties, and Sensory Attributes of Cynanchi wilfordii Radix: Characterization Study vol.44, pp.4, 2015, https://doi.org/10.3746/jkfn.2015.44.4.564
  6. In vivo evaluation of hot water extract of Acorus gramineus root against benign prostatic hyperplasia vol.17, pp.1, 2017, https://doi.org/10.1186/s12906-017-1887-9