DOI QR코드

DOI QR Code

Effects of Vitexin from Mung Bean on 3T3-L1 Adipocyte Differentiation and Regulation According to Adipocytokine Secretion

녹두의 Vitexin이 비만전구세포에서 세포분화 및 아디포사이토카인 분비능에 미치는 영향

  • Wi, Hae-Ri (Dept. of Food and Nutrition, Sungshin Women's University) ;
  • Choi, Mun-Ji (Research Institute of Obesity Sciences, Sungshin Women's University) ;
  • Choi, Se-Lim (Dept. of Food and Nutrition, Sungshin Women's University) ;
  • Kim, Ae-Jung (Nutritional Therapy, The Graduate School of Alternative Medicine, Kyonggi University) ;
  • Lee, Myoung-Sook (Dept. of Food and Nutrition, Sungshin Women's University)
  • 위해리 (성신여자대학교 식품영양학과) ;
  • 최문지 (성신여자대학교 비만과학연구소) ;
  • 최세림 (성신여자대학교 식품영양학과) ;
  • 김애정 (경기대학교 대체의학대학원 식품치료전공) ;
  • 이명숙 (성신여자대학교 식품영양학과)
  • Received : 2012.04.16
  • Accepted : 2012.07.18
  • Published : 2012.08.31

Abstract

Obesity is an important issue worldwide as it may associated with increased prevalence of metabolic diseases. Mung bean is known as a functional food for decreasing the glycemic index and lipid profile of plasma. The purpose of this study was to investigate the anti-obesity effects of vitexin from mung bean on the regulation of adipocyte differentiation and adipocytokine secretion. When 3T3-L1 adipocytes were treated with vitexin from days 0 to 14 at various levels of 25, 50, 100, and $200{\mu}M$, there was no change in cell viability. Vitexin treatment at 50, 100, and $200{\mu}M$ decreased triacylglycerol levels in cells, but only $100{\mu}M$ vitexin induced lipolysis. At $200{\mu}M$ of vitexin, phosphorylation of p38 and ERK, which causes secretion of inflammatory adipocytokines, was depressed, whereas there was an increase in expression of $PPAR{\gamma}$, the key regulator of adipocyte differentiation. Phosphorylation of AMPK increased at $100{\mu}M$ vitexin. TNF-${\alpha}$ and aP2 mRNA expression increased at $25{\mu}M$ vitexin, whereas only TNF-${\alpha}$ mRNA expression increased at $200{\mu}M$ vitexin. Further, the mRNA levels of TNF-${\alpha}$ and aP2 decreased at other concentrations in a dose-dependent manner. Since we observed that mRNA expression of C/EBP, SREBP1, and $PPAR{\gamma}$ did not change upon vitexin treatment, our future studies will investigate other genes such as mTOR, which is related with apoptosis signaling, or SIRT1, which is associated with inhibition of adipogenesis. Our results indicate that vitexin at concentrations between 100 and $200{\mu}M$ is suitable in vivo for the development of mung bean as an anti-obesity therapy or functional food.

본 연구는 녹두묵을 이용한 항비만 임상선행연구를 바탕으로 녹두에 풍부한 vitexin의 항비만 효과의 기작을 살펴보고자 하였다. 녹두 vitexin은 $200{\mu}M$ 농도까지 3T3-L1 지방 전구세포의 독성효과는 없었으며 50, 100, $200{\mu}M$ 농도에서 지방합성이 억제되었고 $100{\mu}M$ 농도에서 지방분해효과로 추측할 수 있는 결과가 나타났다. 또한 $200{\mu}M$에서 염증성 아디포사이토카인 유전자발현을 증폭시키는 상위신호체계(p38, ERK)가 억제된 반면 AMPK의 경우는 $100{\mu}M$ 농도까지 증가하였고 $PPAR{\gamma}$ 단백질 발현도 $200{\mu}M$에서 증폭하였으며 TNF-${\alpha}$와 aP2 mRNA 발현은 $25{\mu}M$에 증가하였다가 감소하였다. 이러한 결과를 바탕으로 결론을 내리면 vitexin $100{\sim}200{\mu}M$ 사이의 농도가 항비만 기작을 규명하는 in vivo 실험을 위한 적절한 농도로 여겨진다. 그러나 본 연구에서는 vitexin 처리에 따른 C/EBP, SREBP1, $PPAR{\gamma}$ mRNA 농도의 변화는 관찰되지 않아 3T3-L1 세포자살(apoptosis) 신호체계 및 mTOR와의 연계성체계 혹은 기타 adipogenesis 억제 유전자로 SIRT1 등의 연구가 향후에 더 필요할 것으로 사료된다.

Keywords

References

  1. WHO. 2011. Obesity and overweight. World Health Organization, Geneva, Switzerland.
  2. Guzik TJ, Mangalat D, Korbut R. 2006. Adipocytokines-novel link between inflammation and vascular function? J Physiol Pharmacol 57: 505-528.
  3. Rondinone CM. 2006. Adipocyte-derived hormones, cytokines, and mediators. Endocrine 29: 81-90. https://doi.org/10.1385/ENDO:29:1:81
  4. Kawakami M, Pekala PH, Lane MD, Cerami A. 1982. Lipoprotein lipase suppression in 3T3-L1 cells by an endotoxin- induced mediator from exudate cells. Proc Natl Acad Sci U S A 79: 912-916. https://doi.org/10.1073/pnas.79.3.912
  5. Fried SK, Zechner R. 1989. Cachectin/tumor necrosis factor decreases human adipose tissue lipoprotein lipase mRNA levels, synthesis, and activity. J Lipid Res 30: 1917-1923.
  6. Feingold KR, Grunfeld C. 1992. Role of cytokines in inducing hyperlipidemia. Diabetes 41: 97-101. https://doi.org/10.2337/diab.41.2.S97
  7. Greenberg AS, Nordan RP, Mclntosh J, Calvo JC, Scow RO, Jablons D. 1992. Interleukin 6 reduces lipoprotein lipase activity in adipose tissue of mice in vivo and in 3T3-L1 adipocytes: a possible role for interleukin 6 in cancer cachexia. Cancer Res 52: 4113-4116.
  8. Pietta PG. 2000. Flavonoids as antioxidants. J Nat Prod 63: 1035-1042. https://doi.org/10.1021/np9904509
  9. Park HJ, Della-Fera MA, Hausman DB, Rayalam S, Ambati S, Baile CA. 2009. Genistein inhibits differentiation of primary human adipocytes. J Nutr Biochem 20: 140-148. https://doi.org/10.1016/j.jnutbio.2008.01.006
  10. Pinent M, Espinel AE, Delgado MA, Baiges I, Bladé C, Arola L. 2011. Isoflavones reduce inflammation in 3T3-L1 adipocytes. Food Chem 125: 513-520. https://doi.org/10.1016/j.foodchem.2010.09.042
  11. Shin SH, Kang SS, Kwon KS. 1990. Studies on the components of the seeds of Phaseolus radiatus. Yakhak Hoeji 34: 282-286.
  12. Kim DK, Son DM, Choi JK, Chon SU, Lee KD, Rim YS. 2010. Growth property and seed quality of mungbean cultivars appropriate for labor saving cultivation. Korean J Crop Sci 55: 239-244.
  13. Kim DK, Chon SU, Lee KD, Kim JB, Rim YS. 2008. Variation of flavonoids contents in plant parts of mungbean. Korean J Crop Sci 53: 279-284.
  14. Kim JP, Lee IS, Seo JJ, Jung MY, Kim YH, Yim NH, Bae KH. 2010. Vitexin, orientin and other flavonoids from Spirodela polyrhiza inhibit adipogenesis in 3T3-L1 cells. Phytother Res 24: 1543-1548. https://doi.org/10.1002/ptr.3186
  15. Ait Mbarek L, Ait Mouse H, Elabbadi N, Bensalah M, Gamouh A, Aboufatima R, Benharref A, Chait A, Kamal M, Dalal A, Zyad A. 2007. Anti-tumor properties of blackseed (Nigella sativa L.) extracts. Braz J Med Biol Res 40: 839-847. https://doi.org/10.1590/S0100-879X2006005000108
  16. Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W. 1992. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 97: 493-497. https://doi.org/10.1007/BF00316069
  17. Clark AM, Sousa KM, Jennings C, MacDougald OA, Kennedy RT. 2009. Continuous-flow enzyme assay on a microfluidic chip for monitoring glycerol secretion from cultured adipocytes. Anal Chem 81: 2350-2356. https://doi.org/10.1021/ac8026965
  18. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  19. Boney CM, Gruppuso PA, Faris RA, Frackelton AR Jr. 2000. The critical role of Shc in insulin-like growth factor-Imediated mitogenesis and differentiation in 3T3-L1 preadipocytes. Mol Endocrinol 14: 805-813.
  20. Ahmadian M, Duncan RE, Sul HS. 2009. The skinny on fat: lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol Metab 20: 424-428. https://doi.org/10.1016/j.tem.2009.06.002
  21. Gregoire FM, Smas CM, Sul HS. 1998. Understanding adipocyte differentiation. Physiol Rev 78: 783-809.
  22. Smas CM, Sul HS. 1995. Control of adipocyte differentiation. Biochem J 309: 697-710.
  23. Wu Z, Rosen ED, Brun R, Hauser S, Adelmant G, Troy AE, McKeon C, Darlington GJ, Spiegelman BM. 1999. Crossregulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3: 151-158. https://doi.org/10.1016/S1097-2765(00)80306-8
  24. Tontonoz P, Hu E, Spiegelman BM. 1994. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79: 1147-1156. https://doi.org/10.1016/0092-8674(94)90006-X
  25. Xu A, Wang Y, Xu JY, Stejskal D, Tam S, Zhang J, Wat NM, Wong WK, Lam KS. 2006. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem 52: 405-413. https://doi.org/10.1373/clinchem.2005.062463
  26. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA. 2005. The $Ca^{2+}$/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280: 29060-29066. https://doi.org/10.1074/jbc.M503824200
  27. Herlaar E, Brown Z. 1999. p38 MAPK signalling cascades in inflammatory disease. Mol Med Today 5: 439-447. https://doi.org/10.1016/S1357-4310(99)01544-0
  28. Seger R, Krebs EG. 1995. The MAPK signaling cascade. FASEB J 9: 726-735.
  29. Dandona P, Aljada A, Bandyopadhyay A. 2004. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25: 4-7. https://doi.org/10.1016/j.it.2003.10.013
  30. Gabay C. 2006. Interleukin-6 and chronic inflammation. Arthritis Res Ther 8: S3.
  31. Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF, Achong MK. 1998. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest 101: 311-320. https://doi.org/10.1172/JCI1368
  32. Sartipy P, Loskutoff DJ. 2003. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A 100: 7265-7270. https://doi.org/10.1073/pnas.1133870100
  33. Candida Deoliveira C, Coghetto Acedo S, Martins Ferreira Gotardo E, de Oliveira Carvalho P, Rocha T, Pedrazzoli J Jr, Gambero A. 2012. Effects of methotrexate on inflammatory alterations induced by obesity: an in vivo and in vitro study. Mol Cell Endocrinol [Epub ahead of print].
  34. Yin X, Tu L, Yang H. 2007. Effect of simvastatin on IL-6 and adiponectin secretion and mRNA expression in 3T3-L1 adipocytes. J Huazhong Univ Sci Technolog Med Sci 27: 248-251. https://doi.org/10.1007/s11596-007-0308-6
  35. Zoico E, Garbin U, Olioso D, Mazzali G, Fratta Pasini AM, Di Francesco V, Sepe A, Cominacini L, Zamboni M. 2009. The effects of adiponectin on interleukin-6 and MCP-1 secretion in lipopolysaccharide-treated 3T3-L1 adipocytes: role of the NF-kappaB pathway. Int J Mol Med 24: 847- 851
  36. Bradley RL, Fisher FF, Maratos-Flier E. 2008. Dietary fatty acids differentially regulate production of TNF-alpha and IL-10 by murine 3T3-L1 adipocytes. Obesity 16: 938-944. https://doi.org/10.1038/oby.2008.39
  37. Berg AH, Lin Y, Lisanti MP, Scherer PE. 2004. Adipocyte differentiation induces dynamic changes in NF-kappaB expression and activity. Am J Physiol Endocrinol Metab 287: E1178-E1188. https://doi.org/10.1152/ajpendo.00002.2004

Cited by

  1. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities vol.201, 2016, https://doi.org/10.1016/j.foodchem.2016.01.101
  2. Bioactivitiy Changes in Mung Beans according to the Roasting Time vol.26, pp.3, 2013, https://doi.org/10.9799/ksfan.2013.26.3.502
  3. Anti-adipogenic activity of blue mussel (Mytilus edulis) extract by regulation of 3T3-L1 adipogenesis through Wnt/β-catenin signaling pathway vol.24, pp.1, 2015, https://doi.org/10.1007/s10068-015-0042-y
  4. Effect of intake of gardenia fruits and combined exercise of middle-aged obese women on hormones regulating energy metabolism vol.18, pp.1, 2014, https://doi.org/10.5717/jenb.2014.18.1.41
  5. 녹두(綠豆) 에탄올 추출물 및 분획물이 피부의 미백, 항염증 효과에 미치는 영향 vol.31, pp.3, 2012, https://doi.org/10.6114/jkood.2018.31.3.039
  6. 기능성 소재로서 녹두(Phaseolus aureus L.)의 이화학적 특성 vol.36, pp.4, 2012, https://doi.org/10.12925/jkocs.2019.36.4.1096
  7. 녹두(Phaseolus aureus L.) 급여가 당뇨 유발 흰쥐의 혈당 및 지질성분 개선에 미치는 영향 vol.37, pp.2, 2012, https://doi.org/10.12925/jkocs.2020.37.2.162
  8. 녹두(Phaseolus aureus L.) 급여가 당뇨성 흰쥐의 BUN 및 간 기능 효소 활성에 미치는 영향 vol.29, pp.4, 2012, https://doi.org/10.5322/jesi.2020.29.4.351
  9. Multitargeted Effects of Vitexin and Isovitexin on Diabetes Mellitus and Its Complications vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6641128
  10. 녹두(Phaseolus aureus L.) 첨가 식이가 고지혈증 흰쥐의 지질성분 개선 및 단백질 농도에 미치는 영향 vol.30, pp.7, 2012, https://doi.org/10.5322/jesi.2021.30.7.537