DOI QR코드

DOI QR Code

Preparation, Characterization and First Application of Aerosil Silica Supported Acidic Ionic Liquid as a Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones

  • Received : 2012.03.07
  • Accepted : 2012.05.16
  • Published : 2012.08.20

Abstract

A new heterogeneous acidic catalyst was successfully prepared by impregnation of silica (Aerosil 300) by an acidic ionic liquid, named 1-(4-sulfonic acid)butylpyridinium hydrogen sulfate [$PYC_4SO_3H$][$HSO_4$], and characterized using FT-IR spectroscopy, the $N_2$ adsorption/desorption analysis (BET), thermal analysis (TG/DTG), and X-ray diffraction (XRD) techniques. The amount of loaded acidic ionic liquid on Aerosil 300 support was determined by acid-base titration. This new solid acidic supported heterogeneous catalyst exhibits excellent activity in the synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones by cyclocondensation reaction of 2-aminobenzamide with aromatic aldehydes under solvent-free conditions and the desired products were obtained in very short reaction times with high yields. This catalyst has the advantages of an easy catalyst separation from the reaction medium and lower problems of corrosion. Recycling of the catalyst and avoidance of using harmful organic solvent are other advantages of this simple procedure.

Keywords

References

  1. Clark, J. H.; Rhodes, C. N. Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents; Royal Society of Chemistry: Cambridge, 2000.
  2. Gerard, V. S.; Notheisz, F. Heterogeneous Catalysis in Organic Chemistry; Elsevier: San Diego, Calif, 2000.
  3. Zeinali-Dastmalbaf, M.; Davoodnia, A.; Heravi, M. M.; Tavakoli- Hoseini, N.; Khojastehnezhad, A.; Zamani, H. A. Bull. Korean Chem. Soc. 2011, 32, 656. https://doi.org/10.5012/bkcs.2011.32.2.656
  4. Davoodnia, A.; Tavakoli-Nishaburi, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 635. https://doi.org/10.5012/bkcs.2011.32.2.635
  5. Song, C. E.; Lim, J. S.; Kim, S. C.; Lee, K.; Chi, D. Y. Chem. Commun. 2000, 2415
  6. Norouzi H.; Davoodnia, A.; Bakavoli, M.; Zeinali-Dastmalbaf, M.; Tavakoli-Hoseini, N.; Ebrahimi, M. Bull. Korean Chem. Soc. 2011, 32, 2311. https://doi.org/10.5012/bkcs.2011.32.7.2311
  7. Khojastehnezhad, A.; Davoodnia, A.; Bakavoli, M.; Tavakoli- Hoseini, N.; Zeinali-Dastmalbaf, M. Chin. J. Chem. 2011, 29, 297. https://doi.org/10.1002/cjoc.201190081
  8. Khan, A. T.; Ghosh, S.; Choudhury, L. H. Eur. J. Org. Chem. 2006, 9, 2226.
  9. Tavakoli-Hoseini, N.; Davoodnia, A. Asian J. Chem. 2010, 22, 7197.
  10. Li, H.; Yua, X.; Tua, S. T.; Yanb, J.; Wanga, Z. Appl. Catal. A 2010, 387, 215. https://doi.org/10.1016/j.apcata.2010.08.030
  11. Davoodnia, A.; Allameh, S.; Fazli, S.; Tavakoli-Hoseini, N. Chem. Pap. 2011, 65, 714. https://doi.org/10.2478/s11696-011-0064-8
  12. Wasserscheid, P.; Welton, T., Eds., Ionic Liquids in Synthesis; Wiley-VCH: Weinheim, 2003.
  13. Davoodnia, A.; Khojastehnezhad, A.; Bakavoli, M.; Tavakoli- Hoseini, N. Chin. J. Chem. 2011, 29, 978. https://doi.org/10.1002/cjoc.201190199
  14. Davoodnia, A.; Attar, P.; Eshghi, H.; Morsali, A.; Tavakoli-Hoseini, N.; Tavakoli-Nishaburi, A. Asian J. Chem. 2011, 23, 1273.
  15. Yadav, L. D. S.; Awasthi, C. Tetrahedron Lett. 2009, 50, 3801. https://doi.org/10.1016/j.tetlet.2009.04.030
  16. Pandey, S. Anal. Chem. Act. 2006, 556, 38. https://doi.org/10.1016/j.aca.2005.06.038
  17. Wasserscheid, P.; Boesmann, A.; Jess, A.; Datsevitch, L.; Schmitz, C.; Lauter, A. PCT Int. Appl. 2003, 18.
  18. Villagran, C.; Aldous, L.; Lagunas, M. C.; Compton, R. G.; Hardacre, C. J. Electroanal. Chem. 2006, 588, 27. https://doi.org/10.1016/j.jelechem.2005.11.023
  19. Wong, H. T.; Han, S.; Livingston, A. G. Chem. Engin. Sci. 2006, 61, 1338. https://doi.org/10.1016/j.ces.2005.08.019
  20. Scheeren, C. W.; Machado, G.; Dupont, J.; Fichtner, P. F. P.; Texeira, S. R. Inorg. Chem. 2003, 42, 4738. https://doi.org/10.1021/ic034453r
  21. Wang, H.; Jiang, D.; Dai, L. Catal. Commun. 2008, 9, 2475. https://doi.org/10.1016/j.catcom.2008.06.021
  22. Cheng, G.; Duan, X.; Qi, X.; Lu, C. Catal. Commun. 2008, 10, 201. https://doi.org/10.1016/j.catcom.2008.08.019
  23. Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli-Hoseini, N. Monatsh. Chem. 2009, 140, 1499. https://doi.org/10.1007/s00706-009-0193-8
  24. Sadanadam, Y. S.; Reddy, R. M.; Bhaskar, A. Eur. J. Med. Chem. 1987, 22, 169. https://doi.org/10.1016/0223-5234(87)90015-8
  25. Bonola, G.; Sianesi, E. J. Med. Chem. 1970, 13, 329.
  26. Hour, M.; Huang, L.; Kuo, S.; Xia, Y.; Bastow, K.; Nakanishi, Y.; Hamel, E.; Lee, K. J. Med. Chem. 2000, 43, 4479. https://doi.org/10.1021/jm000151c
  27. Waisser, K.; Gregor, J.; Dostal, H.; Kunes, J.; Kubicova, L.; Klimesova, V.; Kaustova, J. Farmaco 2001, 56, 803. https://doi.org/10.1016/S0014-827X(01)01134-X
  28. Kametani, T.; Loc, C. V.; Higa, T.; Koizumi, M.; Ihara, M.; Fukumoto, K. J. J. Am. Chem. Soc. 1977, 99, 2306. https://doi.org/10.1021/ja00449a047
  29. Liu, J.-F.; Ye, P.; Sprague, K.; Sargent, K.; Yohannes, D.; Baldino, C. M.; Wilson, C. J.; Ng, S. C. Org. Lett. 2005, 7, 3363. https://doi.org/10.1021/ol0513084
  30. Wolfe, J. F.; Rathman, T. L.; Sleevi, M. C.; Campbell, J. A.; Greenwood, T. D. J. Med. Chem. 1990, 33, 161. https://doi.org/10.1021/jm00163a027
  31. Davoodnia, A.; Allameh, S.; Fakhari, A. R.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2010, 21, 550. https://doi.org/10.1016/j.cclet.2010.01.032
  32. Chen, J. X.; Wu, H. Y.; Su, W. K. Chin. Chem. Lett. 2007, 18, 536. https://doi.org/10.1016/j.cclet.2007.03.037
  33. Chen, J.; Wu, D.; He, F.; Liu, M.; Wu, H.; Ding, J.; Su, W. Tetrahedron Lett. 2008, 49, 3814. https://doi.org/10.1016/j.tetlet.2008.03.127
  34. Salehi, P. Synth. Commun. 2006, 36, 2287. https://doi.org/10.1080/00397910600639752
  35. Rostamizadeh, S.; Amani, A. M.; Aryan, R.; Ghaieni, H. R.; Shadjou, N. Synth. Commun. 2008, 3, 3567.
  36. Moore, J. A.; Sutherland, G. J.; Sowerby, R.; Kelly, E. G.; Palermo, S.; Webster, W. J. Org. Chem. 1969, 887.
  37. Su, W. K.; Yang, B. B. Aust. J. Chem. 2002, 55, 695. https://doi.org/10.1071/CH02117
  38. Khurana, J. M.; Kukreja, G. J. Heterocycl. Chem. 2003, 40, 677. https://doi.org/10.1002/jhet.5570400419
  39. Yoo, C. L.; Fettinger, J. C.; Kurth, M. J. J. Org. Chem. 2005, 70.
  40. Davoodnia, A.; Bakavoli, M.; Barakouhi, Gh.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2007, 18, 1483. https://doi.org/10.1016/j.cclet.2007.10.013
  41. Davoodnia, A.; Roshani, M.; Malaeke, S. H.; Bakavoli, M. Chin. Chem. Lett. 2008, 19, 525. https://doi.org/10.1016/j.cclet.2008.01.037
  42. Emrani A.; Davoodnia, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 2385. https://doi.org/10.5012/bkcs.2011.32.7.2385
  43. Davoodnia, A.; Khojastehnezhad, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 2243. https://doi.org/10.5012/bkcs.2011.32.7.2243
  44. Davoodnia, A. Bull. Korean Chem. Soc. 2011, 32, 4286. https://doi.org/10.5012/bkcs.2011.32.12.4286
  45. Zare-Bidaki, A.; Davoodnia, A. Bull. Korean Chem. Soc. 2012, 33, 1154. https://doi.org/10.5012/bkcs.2012.33.4.1154
  46. Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli- Hoseini, N. Monatsh. Chem. 2010, 141, 867. https://doi.org/10.1007/s00706-010-0329-x
  47. Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli- Hoseini, N. Chin. J. Chem. 2010, 28, 429. https://doi.org/10.1002/cjoc.201090091
  48. Gui, J.; Cong, X.; Liu, D.; Zhang, X.; Hu, Z.; Sun, Z. Catal. Commun. 2004, 5, 473. https://doi.org/10.1016/j.catcom.2004.06.004
  49. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603. https://doi.org/10.1351/pac198557040603

Cited by

  1. Update 1 of: Ionic Liquids in Heterocyclic Synthesis vol.114, pp.20, 2014, https://doi.org/10.1021/cr500106x
  2. The Use of Supported Acidic Ionic Liquids in Organic Synthesis vol.19, pp.7, 2014, https://doi.org/10.3390/molecules19078840
  3. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by succinimide-N-sulfonic acid as a mild and efficient catalyst vol.41, pp.6, 2015, https://doi.org/10.1007/s11164-013-1447-y
  4. Acidic Ionic Liquids vol.116, pp.10, 2016, https://doi.org/10.1021/acs.chemrev.5b00763
  5. Hetero-annulated coumarins as new AChE/BuChE inhibitors: synthesis and biological evaluation vol.25, pp.9, 2016, https://doi.org/10.1007/s00044-016-1626-7
  6. Microfluidic room temperature ionic liquid droplet generation depending on the hydrophobicity and interfacial tension vol.33, pp.1, 2016, https://doi.org/10.1007/s11814-015-0037-7
  7. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by nano-Fe3O4/TiCl2/cellulose as a bio-based magnetic catalyst vol.14, pp.1, 2017, https://doi.org/10.1007/s13738-016-0956-1
  8. Oxidative Desulfurization of Diesel Fuel Using a Brønsted Acidic Ionic Liquid Supported on Silica Gel vol.31, pp.9, 2017, https://doi.org/10.1021/acs.energyfuels.6b03505
  9. Facile method for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by SiO2–H3PW12O40 in water vol.43, pp.1, 2017, https://doi.org/10.1007/s11164-016-2634-4
  10. )-one as a privileged scaffold in drug design vol.8, pp.37, 2018, https://doi.org/10.1039/C8RA02827C
  11. Silver decorated multi-walled carbon nanotubes as a heterogeneous catalyst in the sonication of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones vol.4, pp.23, 2012, https://doi.org/10.1039/c3ra47811d
  12. Phosphomolybdic acid supported on Schiff base functionalized graphene oxide nanosheets: Preparation, characterization, and first catalytic application in the multi‐component synthesis of tetrahy vol.33, pp.5, 2019, https://doi.org/10.1002/aoc.4881
  13. An Efficient Green Protocol for Synthesis of 2,3‐Dihydroquinazolin‐4(1H)‐ones Using SBA‐16/GPTMS‐TSC‐CuIunder Solvent‐Free Conditions vol.5, pp.7, 2012, https://doi.org/10.1002/slct.201904356