• Title/Summary/Keyword: Supported acidic ionic liquid

Search Result 2, Processing Time 0.014 seconds

Preparation, Characterization and First Application of Aerosil Silica Supported Acidic Ionic Liquid as a Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones

  • Yassaghi, Ghazaleh;Davoodnia, Abolghasem;Allameh, Sadegh;Zare-Bidaki, Atefeh;Tavakoli-Hoseini, Niloofar
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2724-2730
    • /
    • 2012
  • A new heterogeneous acidic catalyst was successfully prepared by impregnation of silica (Aerosil 300) by an acidic ionic liquid, named 1-(4-sulfonic acid)butylpyridinium hydrogen sulfate [$PYC_4SO_3H$][$HSO_4$], and characterized using FT-IR spectroscopy, the $N_2$ adsorption/desorption analysis (BET), thermal analysis (TG/DTG), and X-ray diffraction (XRD) techniques. The amount of loaded acidic ionic liquid on Aerosil 300 support was determined by acid-base titration. This new solid acidic supported heterogeneous catalyst exhibits excellent activity in the synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones by cyclocondensation reaction of 2-aminobenzamide with aromatic aldehydes under solvent-free conditions and the desired products were obtained in very short reaction times with high yields. This catalyst has the advantages of an easy catalyst separation from the reaction medium and lower problems of corrosion. Recycling of the catalyst and avoidance of using harmful organic solvent are other advantages of this simple procedure.

Reusable and Efficient Polystryrene-supported Acidic Ionic Liquid Catalyst for Mononitration of Aromatic Compounds

  • Li, Li Xia;Ling, Qi Long;Liu, Zu Liang;Xing, Xiao Dong;Zhu, Xiao Qin;Meng, Xiao
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3373-3377
    • /
    • 2012
  • A series of polystyrene-supported 1-(propyl-3-sulfonate)-3-methyl-imidazolium hydrosulfate acidic ionic liquid (PS-$[SO_3H-PMIM][HSO_4]$) catalysts were prepared and tested for mononitration of simple aromatics compounds with nitric acid. It was found that the reactivity of the catalysts increased with increasing $[SO_3H-PMIM][HSO_4]$ content. The para-selectivity was not only related to the $[SO_3H-PMIM][HSO_4]$ content but also the substituent groups in aromatics. A reaction mechanism of nitration over this new catalyst was proposed. The catalytic activity of this catalyst decreased slightly after fifth runs in the synthesis of nitrotoluene.