DOI QR코드

DOI QR Code

Chiral Separation on Sulfonated Cellulose Tris(3,5-dimethylphenylcarbamate)-coated Zirconia Monolith by Capillary Electrochromatography

  • Received : 2012.04.26
  • Accepted : 2012.05.14
  • Published : 2012.08.20

Abstract

Sulfonated cellulose tris(3,5-dimethylphenylcarbamate) (SCDMPC)-coated zirconia monolith (ZM) was used as the chiral stationary phase in capillary electrochromatography for separation of enantiomers of ten chiral compounds in acetonitrile (ACN)-phosphate buffer mixtures as the eluent. Influences of the ACN content, buffer concentration and pH on chiral separation have been investigated. Separation data on SCDMPC-ZM have been compared with those on CDMPC-ZM. Resolution factors were better on SCDMPC-ZM than CDMPC-ZM while retention factors were in general shorter on the former than the latter. Best chiral resolutions on SCDMPC-ZM were obtained with the eluent of 50% ACN containing 50 mM phosphate at pH around 4.

Keywords

References

  1. Gubitz, G; Schmid, M. G. Electrophoresis 2004, 23, 3981.
  2. Fanali, S.; Catarcini, P.; Blaschke, G.; Chankvetadze, B. Electrophoresis 2001, 22, 3131. https://doi.org/10.1002/1522-2683(200109)22:15<3131::AID-ELPS3131>3.0.CO;2-S
  3. Lammerhofer, M. J. Chromatogr. A 2005, 1068, 31. https://doi.org/10.1016/j.chroma.2004.11.092
  4. Mangelings, D.; Vander Heyden, Y. Electrophoresis 2011, 32, 2583. https://doi.org/10.1002/elps.201100009
  5. Ahuja, S. Chiral Separation by Liquid Chromatography; American Chemical Society: Chapter 1, Washington, D.C., U.S.A, 1991.
  6. K odzi ska, E.; Moravcova, D.; Jandera, P.; Buszewski, B. J. Chromatogr. A 2006, 1109, 51. https://doi.org/10.1016/j.chroma.2005.12.024
  7. Wu, R.; Hu, L.; Wang, F.; Ye, M.; Zou, H. J. Chromatogr. A 2008, 1184, 369. https://doi.org/10.1016/j.chroma.2007.09.022
  8. Svec, F.; Huber, C. G. Anal. Chem. 2006, 78, 2100. https://doi.org/10.1021/ac069383v
  9. Ericson, C.; Liao, J.-L.; Nakazato, K.; Hjerten, S. J. Chromatogr. A 1997, 767, 33. https://doi.org/10.1016/S0021-9673(97)00008-3
  10. Hayes, J. D.; Malik, A. Anal. Chem. 2000, 72, 4090. https://doi.org/10.1021/ac000120p
  11. Behnke, B.; Grom, E.; Bayer, E. J. Chromatogr. A 1995, 716, 207. https://doi.org/10.1016/0021-9673(95)00718-3
  12. Asiaie, R.; Huang, H.; Farnan, D.; Harvathe, C. J. Chromatogr. A 1998, 806, 251. https://doi.org/10.1016/S0021-9673(98)00052-1
  13. Zhu, G.; Zhang, L. H.; Yuan, H.; Liang, Z.; Zhang, W.; Zhang, Y. J. Sep. Sci. 2007, 30, 792. https://doi.org/10.1002/jssc.200600496
  14. Lammerhofer, M. J. Chromatogr. A 2010, 1217, 814. https://doi.org/10.1016/j.chroma.2009.10.022
  15. Wang, Z.; Ouyang, J.; Baeyens, W. R. G. J. Chromatogr. A 2008, 862, 1.
  16. Chen, X. M.; Yamamoto, C.; Okamoto, Y. Pure Appl. Chem. 2007, 79, 1561. https://doi.org/10.1351/pac200779091561
  17. Okamoto, Y.; Kawashima, M.; Hatada, K. J. Am. Chem. Soc. 1984, 106, 5357. https://doi.org/10.1021/ja00330a057
  18. Okamoto, Y.; Yashima, E. Angew. Chem. Int. Ed. Engl. 1998, 37, 1020. https://doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1020::AID-ANIE1020>3.0.CO;2-5
  19. Girod, M.; Chankvetadze, B.; Blaschke, G. J. Chromatogr. A 2000, 887, 439. https://doi.org/10.1016/S0021-9673(99)01204-2
  20. Chankvetadze, B.; Kartozia, I.; Breitkreutz, J.; Okamoto, Y.; Blaschke, G. Electrophoresis 2001, 22, 3327. https://doi.org/10.1002/1522-2683(200109)22:15<3327::AID-ELPS3327>3.0.CO;2-J
  21. Dong, X.; Wu, R.; Dong, J.; Wu, M.; Zhu, Y.; Zou, H. Electrophoresis 2008, 29, 919. https://doi.org/10.1002/elps.200700644
  22. Tachibana, K.; Ohnishi, A. J. Chromatogr. A 2001, 906, 127. https://doi.org/10.1016/S0021-9673(00)00955-9
  23. Wehrli, A.; Hildenbrand, J. C.; Keller, H. P.; Stampeli, R.; Frei, R. W. J. Chromatogr. 1978, 149, 199. https://doi.org/10.1016/S0021-9673(00)80986-3
  24. Glajch, J. L.; Kirkland, J. J.; Kohler, J. J. Chromatogr. 1987, 384, 81. https://doi.org/10.1016/S0021-9673(01)94661-8
  25. McNeff, C. V.; Zigan, L.; Johnson, K.; Carr, P. W.; Wang, A.; Weber-Main, A. M. LC-GC 2000, 5, 514.
  26. Nawrocki, J.; Rigney, M.; McCormick, A.; Carr, P. W. J. Chromatogr. A 1993, 657, 229. https://doi.org/10.1016/0021-9673(93)80284-F
  27. Dunlap, C. J.; McNeff, C. V.; Stoll, D.; Carr, P. W. Anal. Chem. 2001, 11, 599A.
  28. Nawrocki, J.; Dunlap, C. J.; McCormick, A.; Carr, P. W. J. Chromatogr. A 2004, 1028, 1. https://doi.org/10.1016/j.chroma.2003.11.052
  29. Nawrocki, J.; Dunlap, C. J.; Carr, P. W.; Blackwell, J. A. Biotechnol. Prog. 1994, 10, 561. https://doi.org/10.1021/bp00030a001
  30. Castells, C. B.; Carr, P. W. Anal. Chem. 1999, 71, 3013. https://doi.org/10.1021/ac990021f
  31. Castells, C. B.; Carr, P. W. J. Chromatogr. A 2000, 904, 17. https://doi.org/10.1016/S0021-9673(00)00883-9
  32. Park, S. Y.; Park, J. K.; Park, J. H.; McNeff, C. V.; Carr, P. W. Microchem. J. 2001, 70, 179. https://doi.org/10.1016/S0026-265X(01)00129-1
  33. Park, J. H.; Lee, J. W.; Kwon, S. H.; Cha, J. S.; Carr, P. W.; McNeff, C. V. J. Chromatogr. A 2004, 1050, 151. https://doi.org/10.1016/j.chroma.2004.08.027
  34. Kim, I. W.; Choi, H. M.; Yoon, H. J.; Park, J. H. Anal. Chim. Acta 2006, 569, 151. https://doi.org/10.1016/j.aca.2006.03.080
  35. Gwon, J.; Jin, J. H.; McNeff, C. V.; Park, J. H. Electrophoresis 2009, 30, 3846. https://doi.org/10.1002/elps.200900057
  36. Lee, M. R.; Gwon, J.; Park, J. H. Bull. Korean Chem. Soc. 2010, 31, 82. https://doi.org/10.5012/bkcs.2010.31.01.082
  37. Kumar, A. P.; Park, J. H. J. Chromatogr. A 2010, 1217, 4494. https://doi.org/10.1016/j.chroma.2010.04.044
  38. Park, J. H.; Whang, Y. C.; Jung, Y. J.; Okamoto, Y.; Yamamoto, C.; Carr, P. W.; McNeff, C. V. J. Sep. Sci. 2003, 26, 1331. https://doi.org/10.1002/jssc.200301544
  39. Kwon, S. H.; Okamoto, Y.; Yamamoto, C.; Cheong, W.; Moon, M. H.; Park, J. H. Anal. Sci. 2006, 22, 1525. https://doi.org/10.2116/analsci.22.1525
  40. Kumar, A. P.; Park, J. H. J. Chromatogr. A 2011, 1218, 5369. https://doi.org/10.1016/j.chroma.2011.06.002
  41. Kumar, A. P.; Park, J. H. J. Chromatogr. A 2011, 1218, 6548. https://doi.org/10.1016/j.chroma.2011.06.101
  42. Zheng, J.; Bragg, W.; Hou, J.; Lin, N.; Chandrasekaran, S.; Shamsi, S.A. J. Chromatogr. A 2009, 1216, 857. https://doi.org/10.1016/j.chroma.2008.11.082
  43. Okamoto, Y.; Kawashima, M.; Hatada, K. J. Chromatogr. 1986, 363, 173. https://doi.org/10.1016/S0021-9673(01)83736-5
  44. Randon, J.; Huguet, S.; Piram, A.; Puy, G.; Demesmay, C.; Rocca, J.-L. J. Chromatogr. A 2006, 1109, 19. https://doi.org/10.1016/j.chroma.2005.12.044
  45. Krause, K.; Girod, M.; Chankvetadze, B.; Blaschke, G. J. Chromatogr. A 1999, 837, 51. https://doi.org/10.1016/S0021-9673(99)00075-8
  46. Bowser, M.; Bebault, G. M.; Peng, X.; Chen, D. D. Y. Electrophoresis 1997, 18, 2928. https://doi.org/10.1002/elps.1150181534

Cited by

  1. Nanoparticle-based monoliths for chromatographic separations vol.139, pp.17, 2014, https://doi.org/10.1039/C4AN00593G
  2. Advances in enantiomeric resolution on monolithic chiral stationary phases in liquid chromatography and electrochromatography vol.37, pp.9-10, 2014, https://doi.org/10.1002/jssc.201301326
  3. -dimethylformamide, and primary and secondary amines pp.1477-0539, 2018, https://doi.org/10.1039/C8OB02322K
  4. A chiral separation strategy for acidic drugs in capillary electrochromatography using both chlorinated and nonchlorinated polysaccharide‐based selectors vol.35, pp.19, 2012, https://doi.org/10.1002/elps.201400169
  5. Ecotoxicity evaluation of tetramethrin and analysis in agrochemical formulations using chiral electrokinetic chromatography vol.800, pp.None, 2012, https://doi.org/10.1016/j.scitotenv.2021.149496