DOI QR코드

DOI QR Code

Ni(OH)2 and NiO Nanostructures: Synthesis, Characterization and Electrochemical Performance

  • 투고 : 2012.04.03
  • 심사 : 2012.05.09
  • 발행 : 2012.08.20

초록

Hydrothermal route have been used in different conditions for preparation of $Ni(OH)_2$ nanostructures. The NiO nanoparticles were obtained by calcining the $Ni(OH)_2$ precursor at $450^{\circ}C$ for 2 h. The effect of sodium dodecyl sulfonate (SDS) as surfactant on the morphology and size of $Ni(OH)_2$ nanoparticles were discussed in detail. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to characterize the products. The growth mechanism of the as-synthesized nanostructures was also discussed in detail based on the experimental results. Coming up, the NiO nanoparticle modified carbon paste electrode was applied to the determination of captopril in aqueous solution.

키워드

참고문헌

  1. Li, Z. Q.; Ding, Y.; Xiong, Y. J.; Yang, Q.; Xie, Y. Chem. Commun. 2005, 7, 918.
  2. Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Science 2002, 298, 1006. https://doi.org/10.1126/science.1074868
  3. Zhong, Z. Y.; Gates, Y. D.; Xia, B. Y. Adv. Mater 2000, 12, 206. https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<206::AID-ADMA206>3.0.CO;2-5
  4. Lee, K. T.; Jung, Y. S.; Oh, S. M. J. Am. Chem. Soc. 2003, 125, 5652. https://doi.org/10.1021/ja0345524
  5. Klimov, V.; Annu, I. Rev. Phys. Chem. 2007, 58, 635. https://doi.org/10.1146/annurev.physchem.58.032806.104537
  6. Li, L.; Hu, J.; Yang, W.; Alivisatos, A. P. Nano Lett. 2001, 1, 349. https://doi.org/10.1021/nl015559r
  7. Kovtyuklhov, N. I.; Mallouk, T. E. Chem. Eur. 2002, J8, 4354.
  8. Zhu, J. X.; Gui, Z.; Ding, Y. Y.; Wang, Z. Z.; Hu, Y.; Zou, M. Q. J. Phys. Chem. 2007, C111, 5622.
  9. Han, D. Y.; Yang, H. Y.; Shen, C. B.; Zhou, X.; Wang, F. H. Powder Technol. 2004, 147, 113. https://doi.org/10.1016/j.powtec.2004.09.024
  10. Lenggoro, I. W.; Yoshifumi, I.; Noritaka, I.; Kikuo, O. Mater. Res. Bull. 2003, 38, 1819. https://doi.org/10.1016/j.materresbull.2003.08.005
  11. Zhao, B.; Bao, J. H.; Chen, H. L. Chin. J. Inorg. Chem. 2006, 56, 17.
  12. Haruta, M. Catal. Today 1997, 36, 153. https://doi.org/10.1016/S0920-5861(96)00208-8
  13. Liu, H. J.; Peng, T. Y.; Zhao, D. E.; Dai, K.; Peng, Z. H. Mater. Chem. Phys. 2004, 87, 81. https://doi.org/10.1016/j.matchemphys.2004.04.019
  14. Yang, O.; Sha, J.; Ma, X. Y.; Yang, D. R. Mater. Lett. 1967, 59, 2005.
  15. Liang, J. H.; Li, Y. D. Chem. Lett. 2003, 32, 1126. https://doi.org/10.1246/cl.2003.1126
  16. Sumit, B.; Ashwin, S.; Aruna, D.; Rao, P. M. Langmuir 2003, 19, 5522. https://doi.org/10.1021/la034420o
  17. Wang, W.; Liu, Y.; Xu, C.; Zheng, C.; Wang, G. Chem. Phys. Lett. 2002, 362, 119. https://doi.org/10.1016/S0009-2614(02)00996-X
  18. Liang, Z. H.; Zhu, Y. J.; Hu, X. L. J. Phys. Chem. B 2004, 108, 3488. https://doi.org/10.1021/jp037513n
  19. Wang, D. B.; Song, C. X.; Hu, Z. S.; Fu, X. J. J. Phys. Chem. B 2005, 109, 1125.
  20. CaiF, S.; Zhang, G. Y.; Chen, J.; Gou, X. L.; Liu, H. K.; Dou, S. X. Angew Chem. Int. Ed. 2004, 43, 4212. https://doi.org/10.1002/anie.200460053
  21. Yang, L. X.; Zhu, Y. J.; Tong, H.; Liang, Z. H.; Wang, W. W. Cryst Growth Des. 2007, 7, 2716. https://doi.org/10.1021/cg060530s
  22. Wang, D. S.; Xu, R.; Wang, X.; Li, Y. D. Nanotech. 2006, 17, 979. https://doi.org/10.1088/0957-4484/17/4/023
  23. Tost, R. M.; Gonzalez, J. S.; Torres, P. M.; Castellon, E. R.; Lopez, A. J. J. Mater. Chem. 2002, 12, 3331. https://doi.org/10.1039/b204041g
  24. Boschloo, G.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 3039.
  25. Mattei, G.; Mazzoldi, P.; Post, M. L.; Buso, D.; Guglielmi, M.; Martucci, A. Adv. Mater. 2007, 19, 561. https://doi.org/10.1002/adma.200600930
  26. Dirksen, J. A.; Duval, K.; Ring, T. A. Sens Actuators B 2001, 80, 106. https://doi.org/10.1016/S0925-4005(01)00898-X
  27. Yoshio, M.; Todorov, Y.; Yamato, K.; Noguchi, H.; Itoh, J.; Okada, M.; Mouri, T. J. J. Power Sources 1998, 74, 46. https://doi.org/10.1016/S0378-7753(98)00011-1
  28. Karlsson, J.; Roos, A. Sol Energy 2000, 68, 493. https://doi.org/10.1016/S0038-092X(00)00021-9
  29. Fantini, M. C. A.; Ferreira, F. F.; Gorenstein, A. Solid State Ionics 2002, 152-153, 867. https://doi.org/10.1016/S0167-2738(02)00387-9
  30. Wang, X.; Li, L.; Zhang, Y. G.; Wang, S. T.; Zhang, Z. D.; Fei, L. F.; Qian, Y. T. Cryst Growth Des. 2006, 6, 2163. https://doi.org/10.1021/cg060156w
  31. Mamak, M.; Coombs, N.; Ozin, G. A. Chem. Mater. 2001, 13, 3564. https://doi.org/10.1021/cm001259j
  32. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496. https://doi.org/10.1038/35035045
  33. Ni, X. M.; Zhao, Q. B.; Zhou, F.; Zheng, H. G.; Cheng, J.; Li, B. B. J. Cryst. Growth 2006, 289-299, 33.
  34. Wu, Z. Y.; Liu, C. M.; Guo, L.; Hu, R.; Abbas, M. I.; Hu, T. D.; Xu, H. B. J. Phys. Chem. B 2005, 109, 2512. https://doi.org/10.1021/jp0466183
  35. Malandrino, G.; Perdicaro, L. M. S.; Fragala, I. L.; NigroR, L.; Losurdo, M.; Bruno, G. J. Phys. Chem. C 2007, 111, 3211. https://doi.org/10.1021/jp067696o
  36. Sun, X. M.; Liu, J. F.; Li, Y. D. Chem. Eur. J. 2006, 12, 2039. https://doi.org/10.1002/chem.200500660
  37. Masaaki, T.; Toshihiro, M.; Kousuke, K.; Ying, G. W. Inorg. Chim. Acta 2005, 358, 1823. https://doi.org/10.1016/j.ica.2004.10.031
  38. Oliva, P.; Leonardi, J.; Laurent, J. F.; Delmas, C.; Braconnier, J. J.; Figlarz, M.; Fievet, F.; de Guibert, A. J. Power Sources 1982, 8, 229. https://doi.org/10.1016/0378-7753(82)80057-8
  39. Salavati-Niasari, M.; Mohandes, F.; Davar, F.; Mazaheri, M.; Monemzadeh, M.; Yavarinia, N. Inorg. Chim. Acta 2009, 362, 3691. https://doi.org/10.1016/j.ica.2009.04.025
  40. Yang, D.; Wang, R.; He, M.; Zhang, J.; Liu, Z. J. Phys. Chem. B 2005, 109, 7654. https://doi.org/10.1021/jp050083b

피인용 문헌

  1. Synthesis of Nickel and Nickel Hydroxide Nanopowders by Simplified Chemical Reduction vol.2014, pp.1687-9511, 2014, https://doi.org/10.1155/2014/193162
  2. Stable Ni Nanoparticle–Reduced Graphene Oxide Composites for the Reduction of Highly Toxic Aqueous Cr(VI) at Room Temperature vol.30, pp.11, 2014, https://doi.org/10.1021/la500156e
  3. Effects of Laser Energy Density on Size and Morphology of NiO Nanoparticles Prepared by Pulsed Laser Ablation in Liquid vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10040
  4. Effect of PEG6000 on the morphology the β-Ni(OH)2 nanostructures: solvothermal synthesis, characterization, and formation mechanism vol.41, pp.4, 2015, https://doi.org/10.1007/s11164-013-1332-8
  5. Influence of preparation methods on the structure and catalytic performance of nanostructured La0.7Ba0.3Co0.3Ni0.7O3 for CO oxidation vol.117, pp.2, 2016, https://doi.org/10.1007/s11144-015-0965-6
  6. A Versatile Combustion Synthesis and Properties of Nickel Oxide (NiO) Nanoparticles vol.29, pp.8, 2016, https://doi.org/10.1007/s10948-016-3535-x
  7. Synthesis of nanostructured adsorbent and dye adsorption modeling by an intelligent model for multicomponent systems vol.33, pp.3, 2016, https://doi.org/10.1007/s11814-015-0198-4
  8. nanocomposite and artificial neural network modeling vol.36, pp.1, 2016, https://doi.org/10.1002/ep.12452
  9. Electrocatalytic Alfuzosin Oxidation on Electrochemically Oxidized Glassy Carbon Modified with Multiwalled Carbon Nanotubes and Nickel Oxide Nanoparticles vol.166, pp.2, 2019, https://doi.org/10.1149/2.0651902jes
  10. Eco-friendly green synthesis: catalytic activity of nickel hydroxide nanoparticles vol.6, pp.5, 2019, https://doi.org/10.1088/2053-1591/ab04e4
  11. Synthesis and characterisation of AlB2 nanopowders by solid state reaction vol.9, pp.2, 2012, https://doi.org/10.1049/mnl.2013.0665
  12. Production and Characterization of Electroactive Nickel Oxides Grown on Nickel Foam by Anodic Oxidation in KOH Melts for Supercapacitor Applications vol.2, pp.54, 2012, https://doi.org/10.1557/adv.2017.347
  13. Capacitance performance of NiO thin films synthesized by direct and pulse potentiostatic methods vol.25, pp.12, 2012, https://doi.org/10.1007/s11581-019-03159-2