DOI QR코드

DOI QR Code

Biguanide-Functionalized Fe3O4/SiO2 Magnetic Nanoparticles: An Efficient Heterogeneous Organosuperbase Catalyst for Various Organic Transformations in Aqueous Media

  • Alizadeh, Abdolhamid (Faculty of Chemistry, Department of Organic Chemistry, Razi University) ;
  • Khodaei, Mohammad M. (Faculty of Chemistry, Department of Organic Chemistry, Razi University) ;
  • Beygzadeh, Mojtaba (Faculty of Chemistry, Department of Organic Chemistry, Razi University) ;
  • Kordestani, Davood (Faculty of Chemistry, Department of Organic Chemistry, Razi University) ;
  • Feyzi, Mostafa (Faculty of Chemistry, Department of Organic Chemistry, Razi University)
  • 투고 : 2012.03.19
  • 심사 : 2012.05.03
  • 발행 : 2012.08.20

초록

A novel biguanide-functionalized $Fe_3O_4/SiO_2$ magnetite nanoparticle with a core-shell structure was developed for utilization as a heterogeneous organosuperbase in chemical transformations. The structural, surface, and magnetic characteristics of the nanosized catalyst were investigated by various techniques such as transmission electron microscopy (TEM), powder X-ray diffraction (XRD), vibrating sample magnetometry (VSM), elemental analyzer (EA), thermogravimetric analysis (TGA), $N_2$ adsorption-desorption (BET and BJH) and FT-IR. The biguanide-functionalized $Fe_3O_4/SiO_2$ nanoparticles showed a superpara-magnetic property with a saturation magnetization value of 46.7 emu/g, indicating great potential for application in magnetically separation technologies. In application point of view, the prepared catalyst was found to act as an efficient recoverable nanocatalyst in nitroaldol and domino Knoevenagel condensation/Michael addition/cyclization reactions in aqueous media under mild condition. Additionally, the catalyst was reused six times without significant degradation in catalytic activity and performance.

키워드

참고문헌

  1. Ishigawa, T. Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts; John Wiley & Sons: 2009.
  2. Haflinger, G.; Kuske, F. K. H. The Chemistry of Amidines and Imidates; John Wiley & Sons: Chichester, 1991.
  3. Gladysz, J. A. Chem. Rev. 2002, 102, 3215. https://doi.org/10.1021/cr020068s
  4. Leadbeater, N. E.; Marco, M. Chem. Rev. 2002, 102, 3217. https://doi.org/10.1021/cr010361c
  5. Hu, A.; Yee, G. T.; Lin, W. J. Am. Chem. Soc. 2005, 127, 12486. https://doi.org/10.1021/ja053881o
  6. Shylesh, S.; Schunemann, V.; Thiel, W. R. Angew. Chem. Int. Ed. 2010, 49, 3428. https://doi.org/10.1002/anie.200905684
  7. Ranganath, K. V. S.; Glorius, F. Catal. Sci. Technol. 2011, 1, 13. https://doi.org/10.1039/c0cy00069h
  8. Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J. M. Chem. Rev. 2011, 111, 3036. https://doi.org/10.1021/cr100230z
  9. Macquarrie, D. J.; Jackson, D. B.; Tailland, S.; Utting, K. A. J. Mater. Chem. 2001, 11, 1843. https://doi.org/10.1039/b100957p
  10. Kim, K. S.; Somg, J. H.; Kim, J. H.; Seo, G. Stud. Surf. Sci. Catal. 2003, 146, 505. https://doi.org/10.1016/S0167-2991(03)80432-9
  11. Phan, N. T. S.; Jones, C. W. J. Mol. Catal. A 2006, 253, 123. https://doi.org/10.1016/j.molcata.2006.03.019
  12. Gelbard, G.; Vielfaure-Joly, F. Tetrahedron Lett. 1998, 39, 2743. https://doi.org/10.1016/S0040-4039(98)00300-1
  13. Yang, D.; Hu, J.; Fu, S. J. Phys. Chem. C 2009, 113, 7646. https://doi.org/10.1021/jp900868d
  14. Stober, W.; Fink, A.; Bohn, E. J. J. Colloid Interface Sci. 1968, 26, 62. https://doi.org/10.1016/0021-9797(68)90272-5
  15. Zeng, T.; Yang, L.; Hudson, R.; Song, G.; Moores, A.-R.; Li, C.-J. Org. Lett. 2011, 13, 442. https://doi.org/10.1021/ol102759w
  16. Abdolmohammadi, S.; Balalaie, S. Tetrahedron Lett. 2007, 48, 3299. https://doi.org/10.1016/j.tetlet.2007.02.135
  17. Kumar, D.; Reddy, V. B.; Sharad, S.; Dube, U.; Kapur, S. Eur. J. Med. Chem. 2009, 44, 3805. https://doi.org/10.1016/j.ejmech.2009.04.017
  18. Yang, T. Z.; Shen, C. M.; Gao, H. J. J. Phys. Chem. B 2005, 109, 23233. https://doi.org/10.1021/jp054291f
  19. Giri, J.; Thakurta, S. G.; Bellare, J.; Nigam, A. K.; Bahadur, D. J. Magn. Magn. Mater. 2005, 293, 62. https://doi.org/10.1016/j.jmmm.2005.01.044
  20. Waldron, R. D. Phys. Rev. 1955, 99, 1727. https://doi.org/10.1103/PhysRev.99.1727
  21. Yamaura, M.; Camiloa, R. L.; Sampaio, L. C.; Macedo, M. A.; Nakamura, M.; Toma, H. E. J. Magn. Magn. Mater. 2004, 279, 210. https://doi.org/10.1016/j.jmmm.2004.01.094
  22. Gunasekaran, S.; Natarajan, R. K.; Renganayaki, V.; Natarajan, S. Indian. J. Pure & Applied Physics 2006, 44, 495.
  23. Wang, J.; Zheng, S.; Shao, Y.; Liu, J.; Xu, Z.; Zhu, D. J. Colloid Interface Sci. 2010, 349, 293. https://doi.org/10.1016/j.jcis.2010.05.010
  24. Lei, Z.; Li, Y.; Wei, X. J. Solid State Chem. 2008, 181, 480. https://doi.org/10.1016/j.jssc.2007.12.004
  25. Chang, Y. C.; Chen, D. H. J. Colloid Interface Sci. 2005, 283, 446. https://doi.org/10.1016/j.jcis.2004.09.010
  26. Naka, K.; Narital, A.; Tanakal, H.; Chujo, Y.; Morita, M.; Inubushi, T.; Nishimura, I.; Hiruta, J.; Shibayama, H.; Koga, M.; Ishibashi, S.; Seki, J.; Kizaka-Kondoh, S.; Hiraoka, M. Polym. Adv. Technol. 2008, 19, 1421. https://doi.org/10.1002/pat.1218
  27. Ohandley, R. C. Modern Magnetic Materials: Principles and Applicat Ions; Wiley: New York, 2000.
  28. Iida, R. H.; Takayanagi, K.; Nakanishi, T.; Osaka, T. J. Colloid Interface Sci. 2007, 314, 274. https://doi.org/10.1016/j.jcis.2007.05.047
  29. ChengLin, G. W.; Huan, H.; HongJun, G.; Gan, L.; RuJiang, M.; YingLi, A.; LinQi, S. Sci. China Chem. 2010, 53, 514. https://doi.org/10.1007/s11426-010-0084-1
  30. Zhou, C. L.; Zhou, Y. Q.; Wang, Z. Y. Chinese Chem. Lett. 2003, 14, 355.
  31. Bray, C. V.; Jiang, F.; Wu, X. F.; Sortais, J.-B.; Darcel, C. Tetrahedron Lett. 2010, 51, 4555. https://doi.org/10.1016/j.tetlet.2010.06.106
  32. Abdolmohammadi, S.; Balalaie, S. Tetrahedron Lett. 2007, 48, 3299. https://doi.org/10.1016/j.tetlet.2007.02.135
  33. Heravi, M. M.; Alimadadi-Jani, B.; Derikvand, F.; Bamoharram, F. F.; Oskooie, H. A. Catal. Commun. 2008, 10, 272. https://doi.org/10.1016/j.catcom.2008.08.023
  34. Wang, L. M.; Shao, J. H.; Tian, H.; Wang, Y. H.; Liu, B. J. Fluorine Chem. 2006, 127, 97. https://doi.org/10.1016/j.jfluchem.2005.10.004
  35. Hekmatshoar, R.; Majedi, S.; Bakhtiari, K. Catal. Commun. 2008, 9, 307. https://doi.org/10.1016/j.catcom.2007.06.016

피인용 문헌

  1. N-propylpiperazine sulfonic acid immobilized on Fe3O4 magnetic silica nanoparticles: an efficient and heterogeneous catalyst for the one-pot synthesis of 9H-xanthene or methylenediphenol derivatives under solvent-free conditions vol.112, pp.1, 2014, https://doi.org/10.1007/s11144-014-0686-2
  2. Magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous medium vol.16, pp.7, 2014, https://doi.org/10.1039/C4GC00458B
  3. Magnetic solid phase adsorption, preconcentration and determination of methyl orange in water samples using silica coated magnetic nanoparticles and central composite design vol.4, pp.4, 2014, https://doi.org/10.1007/s40089-014-0124-5
  4. core-shell nanocomposite as an efficient and green catalyst for the multi-component synthesis of highly substituted chromeno[2,3-b]pyridines in aqueous ethanol media vol.8, pp.3-4, 2015, https://doi.org/10.1080/17518253.2015.1107139
  5. N-Propylcarbamothioyl benzamide complex of Bi(III) supported on superparamagnetic Fe3O4/SiO2 nanoparticles as a highly efficient and magnetically recoverable heterogeneous nanocatalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones (DHPMs) via the Biginelli reaction vol.117, pp.1, 2016, https://doi.org/10.1007/s11144-015-0931-3
  6. Recent advances in catalysts immobilized on magnetic nanoparticles vol.13, pp.10, 2016, https://doi.org/10.1007/s13738-016-0900-4
  7. Recyclable organocatalysts based on hybrid silicas vol.18, pp.4, 2016, https://doi.org/10.1039/C5GC02579F
  8. Preparation, characterization, and use of poly(vinylpyrrolidonium) hydrogen phosphate ([PVP-H]H2PO4) as a new heterogeneous catalyst for efficient synthesis of 2-amino-tetrahydro-4H-pyrans vol.42, pp.5, 2016, https://doi.org/10.1007/s11164-015-2312-y
  9. Urea-functionalized silica-coated Fe3−x Ti x O4 magnetic nanoparticles: as highly efficient and recyclable heterogeneous nanocatalyst for synthesis of 4H-chromene and 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives vol.14, pp.2, 2017, https://doi.org/10.1007/s13738-016-0989-5
  10. Ferromagnetic nanoparticle-supported copper complex: A highly efficient and reusable catalyst for three-component syntheses of 1,4-disubstituted 1,2,3-triazoles and C-S coupling of aryl halides vol.31, pp.10, 2017, https://doi.org/10.1002/aoc.3714
  11. :F Layer vol.64, pp.12, 2017, https://doi.org/10.1002/jccs.201700256
  12. Synthesis and characterization of magnetically recoverable 1-(copperferritesiloxypropyl)-3-methylimidazolium heteropolytungstate ionic liquid as a new nanocatalyst for the preparation of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones vol.7, pp.4, 2017, https://doi.org/10.1007/s40097-017-0241-6
  13. Heteropolytungstostannate as a homo- and heterogeneous catalyst for Knoevenagel condensations, selective oxidation of sulfides and oxidative amination of aldehydes vol.7, pp.72, 2017, https://doi.org/10.1039/C7RA06112A
  14. -supported boron sulfonic acid as a novel magnetically heterogeneous catalyst for the synthesis of pyrano coumarins vol.7, pp.74, 2017, https://doi.org/10.1039/C7RA08253C
  15. Design and characterization of Dendrimer of MNPs as a novel, heterogeneous and reusable nanomagnetic organometallic catalyst for one-pot synthesis of hydroxyl naphthalene-1,4-dione derivatives under solvent-free conditions vol.32, pp.3, 2017, https://doi.org/10.1002/aoc.4183
  16. -Chromenes Assisted by Poly(4-Vinylpyridine) pp.1563-5333, 2018, https://doi.org/10.1080/10406638.2018.1450271
  17. A hybrid material composed of a polyoxometalate of type BeW12O40 and an ionic liquid immobilized onto magnetic nanoparticles as a sorbent for the extraction of organophosphorus pesticides prior to their determination by gas chromatography vol.185, pp.3, 2018, https://doi.org/10.1007/s00604-018-2713-x
  18. Facile pathway for synthesis of two efficient catalysts for preparation of 2-aminothiophenes and tetrahydrobenzo[b]pyrans vol.44, pp.3, 2018, https://doi.org/10.1007/s11164-017-3223-x
  19. L-arginine modified magnetic nanoparticles: green synthesis and characterization vol.29, pp.7, 2018, https://doi.org/10.1088/1361-6528/aaa2b5
  20. Magnetic solid-phase extraction using Schiff base ligand supported on magnetic nanoparticles as sorbent combined with dispersive liquid-liquid microextraction for the extraction of phenols from water samples vol.98, pp.11, 2018, https://doi.org/10.1080/03067319.2018.1519071
  21. Nano-Fe3O4@SiO2–TiCl3 as a novel nano-magnetic catalyst for the synthesis of 4H-pyrimido[2,1-b]benzothiazoles vol.44, pp.10, 2018, https://doi.org/10.1007/s11164-018-3498-6
  22. ]pyrimidinone derivatives vol.32, pp.7, 2018, https://doi.org/10.1002/aoc.4371
  23. Synthesis of carboxyl-functionalized magnetic nanoparticles for adsorption of malachite green from water: Kinetics and thermodynamics studies vol.65, pp.8, 2018, https://doi.org/10.1002/jccs.201700361
  24. Fe3O4 magnetic nanoparticles coated with a copolymer: a novel reusable catalyst for one-pot three-component synthesis of 2-amino-4H-chromene vol.124, pp.2, 2018, https://doi.org/10.1007/s11144-018-1361-9
  25. immobilized on dipeptide-functionalized silica-coated magnetite nanoparticles as a catalyst for the selective aerobic oxidation of alcohols vol.42, pp.14, 2018, https://doi.org/10.1039/C8NJ00781K
  26. Particles vol.367, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/367/1/012010
  27. vol.32, pp.5, 2018, https://doi.org/10.1002/aoc.4323
  28. Cross-linked poly(dimethylaminoethyl acrylamide) coated magnetic nanoparticles: a high loaded, retrievable, and stable basic catalyst for the synthesis of benzopyranes in water vol.4, pp.91, 2014, https://doi.org/10.1039/c4ra07503j
  29. Facile synthesis of methyl propylaminopropanoate functionalized magnetic nanoparticles for removal of acid red 114 from aqueous solution vol.6, pp.114, 2012, https://doi.org/10.1039/c6ra22710d
  30. Silica-modified magnetite Fe3O4 nanoparticles grafted with sulfamic acid functional groups: an efficient heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-on vol.37, pp.6, 2012, https://doi.org/10.1080/17415993.2016.1177055
  31. Preparation of Fe3O4/SiO2-guanidine organobase catalyst for 1,5-diphenylpenta-2,4-dien-1-one synthesis vol.188, pp.None, 2017, https://doi.org/10.1088/1757-899x/188/1/012026
  32. Composites of Fe3O4/SiO2from Natural Material Synthesized by Co-Precipitation Method vol.202, pp.None, 2012, https://doi.org/10.1088/1757-899x/202/1/012057
  33. Sulfonic Acid Functionalized Magnetite Nanoporous-KIT-6 for Removal of Methyl Green from Aqueous Solutions vol.52, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/jnanor.52.54
  34. Chemical Vapour Deposition of MWCNT on Silica Coated Fe3O4 and Use of Response Surface Methodology for Optimizing the Extraction of Organophosphorus Pesticides from Water vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/4564709
  35. A novel protocol for the synthesis of pyrano[2,3-h]coumarins in the presence of Fe3O4@SiO2@(CH2)3OCO2Na as a magnetically heterogeneou vol.43, pp.12, 2019, https://doi.org/10.1039/c8nj06415f
  36. Fe3O4@SiO2-BenzIm-Fc[Cl]/ZnCl2: a novel and efficient nano-catalyst for the one-pot three-component synthesis of pyran annulated bis-heterocyclic scaffolds under ultrasound irradiation vol.45, pp.4, 2019, https://doi.org/10.1007/s11164-018-3704-6
  37. Hyperactive Magnetically Separable Nano-sized MgFe2O4 Catalyst for the Synthesis of Several Five- and Six-Membered Heterocycles vol.13, pp.2, 2019, https://doi.org/10.23939/chcht13.02.163
  38. Structure and magnetic properties of silica-coated magnetite-nanoparticle composites vol.6, pp.8, 2012, https://doi.org/10.1088/2053-1591/ab29af
  39. From the Shelf to the Particle: Preparation of Highly Organic-Functionalized Magnetic Composites via 4-Nitrophenyl Reactive Ester vol.84, pp.16, 2019, https://doi.org/10.1021/acs.joc.9b01122
  40. Amine modified nanozeolites for the three component synthesis of chromenes vol.45, pp.9, 2012, https://doi.org/10.1007/s11164-019-03858-5
  41. Application of Box-Behnken Design in Synthesis of 2-Amino-5-oxo-5,6,7,8-Tetrahydro-4H-Chromenes Using Tetrabutylammonium Hydrogen Sulfate (TBAHS) vol.51, pp.5, 2012, https://doi.org/10.1080/00304948.2019.1644948
  42. Synthesis, Characterization and Catalytic Activity of Magnetic KI@Fe3O4 Nanoparticles for Henry Reaction Under Solvent Free Conditions vol.149, pp.10, 2012, https://doi.org/10.1007/s10562-019-02814-7
  43. Tandem Oxidative Pudovik Reaction Using Fe3O4@SiO2‐Metformin‐Cu (II) as an Efficient and Recoverable Catalyst vol.5, pp.14, 2012, https://doi.org/10.1002/slct.201904662
  44. 3‐Amino‐5‐mercapto‐1,2,4‐triazole‐functionalized Fe3O4 magnetic nanocomposite as a green and efficient catalyst for synthesis of bis(indolyl)m vol.34, pp.6, 2012, https://doi.org/10.1002/aoc.5641
  45. The chemistry of biguanides: from synthetic routes to applications in organic chemistry vol.98, pp.6, 2012, https://doi.org/10.1139/cjc-2019-0371
  46. Oxidative amidation by Cu(II)-guanidine acetic acid immobilized on magnetized sawdust with eggshell as a natural base vol.44, pp.27, 2012, https://doi.org/10.1039/d0nj00835d
  47. Role of silica coated magnetic nanoparticle on cell flocculation, lipid extraction and linoleic acid production from Chlorella pyrenoidosa vol.34, pp.19, 2012, https://doi.org/10.1080/14786419.2019.1593164
  48. Ionic liquid-decorated Fe3O4@SiO2 nanocomposite coated on talc sheets: An efficient adsorbent for methylene blue in aqueous solution vol.121, pp.None, 2020, https://doi.org/10.1016/j.inoche.2020.108204
  49. Melamine: An Efficient Promoter for Some of the Multi-component Reactions vol.41, pp.1, 2012, https://doi.org/10.1080/10406638.2019.1570949
  50. Synthesis of 1,8-Dioxo-octahydro-xanthene and Tetrahydrobenzo[b]pyran Derivatives Promoted by two Bis-imidazolium-based Ionic Liquids vol.8, pp.None, 2012, https://doi.org/10.2174/2213337208666210726141934
  51. Magnetic Nanoparticles Functionalized with Copper Hydroxyproline Complexes as an Efficient, Recoverable, and Recyclable Nanocatalyst: Synthesis and Its Catalytic Application in a Tandem Knoevenagel-Mi vol.60, pp.19, 2021, https://doi.org/10.1021/acs.inorgchem.1c02470
  52. Introducing rGO@Fe3O4@Ni as an efficient magnetic nanocatalyst for the synthesis of tetrahydrobenzopyranes via multicomponent coupling reactions of dimedone, malononitrile, and a vol.36, pp.2, 2012, https://doi.org/10.1002/aoc.6496