DOI QR코드

DOI QR Code

Electronic Structure of [NiS4]- Investigated by Single-Crystal EPR and Density Functional Theory

  • Min, Su-Young (Department of Chemistry, Kyungpook National University) ;
  • Noh, Dong-Youn (Department of Chemistry, Seoul Women's University) ;
  • Choi, Cheol-Ho (Department of Chemistry, Kyungpook National University) ;
  • Lee, Hong-In (Department of Chemistry, Kyungpook National University)
  • Received : 2012.04.28
  • Accepted : 2012.06.08
  • Published : 2012.06.20

Abstract

To understand the electronic structure of $[NiS_4]^-$ complex ions, two complexes with such $[NiS_4]^-$ core, $FcCH=CHPymCH_3[Ni(dmit)_2]$ (Pym = pyridinium, $dmit^{2-}$ = 2-thioxo-1,3-dithiole-4,5-dithiolate) and $FcCH=CHPymCH_3[Ni(dddt)_2]{\cdot}{\frac{1}{2}}H_2O$ ($dddt^{2-}=5,6-dihydro-1,4-dithiin-2,3-dithiolato$), were synthesized to be characterized by X-ray crystallography, single crystal electron paramagnetic resonance (EPR) and density functional theory (DFT) calculation. Powder EPR spectra show narrow g-anisotropy but the anisotropy is bigger in $[Ni(dmit)_2]^-$ than in $[Ni(dddt)_2]^-$, indicating bigger spin density in Ni(III) d-orbital of $[Ni(dmit)_2]^-$ than in $[Ni(dddt)_2]^-$, which is consistent to DFT results. EPR studies of the crystals of the complexes surprisingly suggest that the $g_y$-axis of $[Ni(dddt)_2]^-$ is approximately on or perpendicular to the $[NiS_4]^-$ plane while the $g_y$-axis of $[Ni(dmit)_2]^-$ is on the plane, though DFT study of the complexes of this study and previously reported $[NiS_4]^-$ complexes indicate that the $g_y$-axis is on the $[NiS_4]^-$ plane.

Keywords

References

  1. B. Jaun, Chimia 48, 50, (1994).
  2. J. G. Ferry, Annu. Rev. Microbiol. 49, 305 (1995). https://doi.org/10.1146/annurev.mi.49.100195.001513
  3. S. B. Mulrooney, R. P. Hausinger, FEMS Microbiol. Rev. 27, 239 (2003). https://doi.org/10.1016/S0168-6445(03)00042-1
  4. S. Ciurli, S. Mangan, in "Handbook on metalloproteins" (I. Bertini, A. Sigel, H. Sigel, Eds.), pp. 669-708, Marcel Dekker, New York, 2001.
  5. P. Day, M. Kurmoo, T. Mallah, I. R. Marsden, R. H. Friend, F. L. Pratt, W. Hayes, D. Chasseau, J. Gaultier, G. Bravic, L. Ducasse, J. Am. Chem. Soc. 114, 10722 (1992). https://doi.org/10.1021/ja00053a007
  6. M. Kurmoo, A. W. Graham, P. Day, S. J. Coles, M. B. Hurstouse, J. L. Caulfield, J. Singleton, F. L. Pratt, W. Hayes, L. Ducasse and P. Guionneau, J. Am. Chem. Soc. 117, 12209 (1995). https://doi.org/10.1021/ja00154a022
  7. T. Enoki, J. Yamaura, A. Miyazaki, Bull. Chem. Soc. Jpn 70, 2005 (1997). https://doi.org/10.1246/bcsj.70.2005
  8. E. Coronado, J. R. Galan-Mascaros, C. J. Gomez-Garcia, V. Laukhin, Nature 408, 447 (2000). https://doi.org/10.1038/35044035
  9. S. Uji, H. Shinagawa, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, H. Kobayashi, Nature 410, 908 (2000).
  10. H. Fujiwara, E. Fujiwara, Y. Nakazawa, B. Z. Narymbetov, K. Kato, H. Kobayashi, A. Kobayashi, M. Tokumoto, P. Cassoux, J. Am. Chem. Soc. 123, 306 (2001). https://doi.org/10.1021/ja002439x
  11. A. Volbeda, E. Garcin, C. Piras, A. L. de Lacey, V. M. Fernandez, E. C. M. Frey, J. C. Fontecilla-Camps, J. Am. Chem. Soc. 118, 12989 (1996). https://doi.org/10.1021/ja962270g
  12. A. H. Maki, N. Edelstein, A. Davison, R. H. Holm, J. Am. Chem. Soc. 86, 4580 (1964). https://doi.org/10.1021/ja01075a013
  13. M. Sano, H. Adachi, H. Yamatera, Bull. Chem. Soc. Jpn 54, 2636 (1981). https://doi.org/10.1246/bcsj.54.2636
  14. G. N. Schrauzer, V. P. Mayweg, J. Am. Chem. Soc. 87, 3586 (1965).
  15. W. E. Hatfield, in "Molecular Metal" (W. E. Hatfield, Ed.), Plenum, New York, 1979.
  16. J. T. Devreese, R. P. Evrard, V. E. Van Doren, in "Highly Conducting One-Dimensional Solids" (J. T. Devreese, R. P. Evrard, V. E. Van Doren, Eds.), Plenum, New York, 1979.
  17. J. S. Miller, in "Extended Linear Chain Compounds" (J. S. Miller, Ed.), Plenum, New York, 1982 (Vol. 1 and 2)
  18. J. S. Miller, in "Extended Linear Chain Compounds" (J. S. Miller, Ed.), Plenum, New York, 1983 (Vol.3).
  19. Y. -K. Han, D. -K. Seo, H. Kang, W. Kang, D. -Y. Noh, Inorg. Chem. 43, 7294 (2004). https://doi.org/10.1021/ic0497432
  20. A. Abragam, B. Bleaney, in "Electron Paramagnetic Resonance of Transition Metal Ions" (A. Abragam, B. Bleaney, 2nd eds.), Clarendon Press, Oxford, 1970.
  21. J. E. Huyett, S. B. Choudhury, D. M. Eichhorn, P. A. Bryngelson, M. J. Maroney, B. M. Hoffman, Inorg. Chem. 37, 1361 (1998). https://doi.org/10.1021/ic9703639
  22. M. J. Frisch, G. W. Truck, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Peterson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foreman, J. Cioslowski, B. B. Stefanov, A. Nanayakara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, Gaussian 94, Gaussian, Inc. Pittsburgh, PA (1995).