DOI QR코드

DOI QR Code

과냉각대형액적 충돌예측을 위한 오일러리안 기반 수치 모델링

Eulerian-based Numerical Modeling for Impingement Prediction of Supercooled Large Droplets

  • 투고 : 2012.05.24
  • 심사 : 2012.07.18
  • 발행 : 2012.08.01

초록

외부 환경조건에 의한 항공기 위협인자로서 과냉각 대형 액적은 그 중요성이 지속적으로 보고되고 있다. 이러한 대형 액적의 거동은 상대적으로 작은 액적과 달리 그 형태가 변화하며 액적이 표면과 충돌시 파편이 발생하는 등 다양한 물리적 특성을 나타낸다. 이러한 대형 액적의 거동을 시뮬레이션 하기 위해 비정렬 격자계 기반 2차원 압축성 Navier-Stokes 코드와 액적 거동 시뮬레이션 코드를 개발하였다. 또한 대형 액적의 물리적 현상을 모사하기 위해 반경험적 기법에 기반한 액적항력모델과 액적-고체표면 충돌 모델을 기존 액적장 지배방정식의 액적항력계수 및 경계면의 수치적 경계조건으로 적용하였다. 그 결과 풍동 시험과 액적충돌 영역 및 최대 축적율은 매우 유사하게 나타난 반면 NACA23012 익형의 아랫면 주위 축적율의 경향은 풍동 시험보다 다소 크게 나타났다.

Supercooled large droplet issues in aircraft icing have been continually reported due to the important safety considerations. In order to simulate the impingement behavior of large droplets, a two-dimensional and compressible Navier-Stokes code was developed to determine the flow field around the test model. Also, the Eulerian-based droplet impingement model including a semi-empirical approach for the droplet-wall interaction process and droplet break-up was developed. In particular, the droplet-wall interactions were considered as numerical boundary conditions for the droplet impingement simulation in the supercooled large droplet conditions. Finally, the present results were compared with the experimental test data and the LEWICE results. The droplet impingement area and maximum collection efficiency values between present results and wind tunnel data were in good agreements. Otherwise, the inclination of collection efficiency of the present result is over-predicted than the wind tunnel data around a lower surface of the NACA 23012 airfoil.

키워드

참고문헌

  1. FAA, Airplane and Engine Certification Requirements in Supercooled Large Drop, Mixed Phase, and Ice Crystal Icing Conditions, Federal Register, Vol. 75, No. 124, 2010, pp. 37311-37339.
  2. Clift, R., Grace, J.R., and Weber, M.E., " Bubbles, Drops and Particles," Academic Press, New York, 1978.
  3. Bai, C., and Gosman, A.D., "Development of Methodology for Spray Impingement Simulation," SAE TR 950283, 1995.
  4. Honsek, R., Habashi, W.G., and Aube, M.S., "Eulerian Modeling of In-Flight Icing Due to Supercooled Large Droplet," Journal of Aircraft, Vol. 45 No. 4, 2008, pp. 1290-1296. https://doi.org/10.2514/1.34541
  5. Iuliano, E., Mingione, G., Petrosino, F., and Hervy, F., "Eulerian Modeling of Large Droplet Physics Toward Realistic Aircraft Icing Simulation," Journal of Aircraft, Vol. 48 No. 5, 2011, pp. 1621-1632. https://doi.org/10.2514/1.C031326
  6. Sabri, F., Octavian, T., and Paraschivoiu, I., "In-Flight Ice Accretion Simulation In SLD Conditions," AIAA 2007-4282, 2007.
  7. Jung, S.K., Myong, R.S., and Cho, T.H., " Development of Eulerian Droplets Impingement Model Using HLLC Riemann Solver and POD-Based Reduced Order Method," AIAA 2011-3907, 2011.
  8. Lapple, C.E., "Particle Dynamics," Engineering Research Laboratory, E.I. Dupont de Nemours and Company, Wilmington, Delaware, 1951.
  9. Trujillo, M.F., Mathews, W.S., Lee, C.F., and Peter, J.E., "Modeling and Experiment of Impingement and Atomization of a Liquid Spray on a Wall," International Journal of Engine Research, Vol. 1 No. 1, 2000, pp. 87-105. https://doi.org/10.1243/1468087001545281
  10. Bourgault, Y., Habashi, W.G., Dompierre, J., and Baruzzi, G.S., "A Finite Element Method Study of Eulerian Droplets Impingement Models," International Journal for Numerical Methods in Fluids, Vol. 29 No. 4, 1999, pp. 429-449. https://doi.org/10.1002/(SICI)1097-0363(19990228)29:4<429::AID-FLD795>3.0.CO;2-F
  11. Toro, E.F., Shock-Capturing Methods for Free-Surface Shallow Flows, Wiley, 2001.
  12. Jung, S.K., Numerical Modeling of Aircraft Icing and Static Fluid-Structure Interaction Using CFD-based Simulation Methods, Ph.D. Thesis, Gyeongsang National University, 2011.
  13. Papadakis, M., Rachman, A., Wong, S., Yeong, H., Hung, K.E., Vu, G.T., and Bidwell, C.S., "Water Droplet Impingement on Simulated Glaze, Mixed, and Rime Ice Accretions," NASA/TM-2007-213961, 2007.
  14. Papadakis, M., Rachman, A., Wong, S., Yeong, H., Hung, K.E., Vu, G.T., and Bidwell, C.S., "Water Impingement Experiments on a NACA 23012 Airfoil with Simulated Glaze Shape," AIAA 2004-0565, 2004.