DOI QR코드

DOI QR Code

Evaluation of Physical Properties of Korean Pine (Pinus koraiensis Siebold & Zucc.) Lumber Heat-Treated by Superheated Steam

과열증기 열처리 잣나무재의 물성 평가

  • Park, Yong-Gun (Department of Forest Science, College of Agriculture & Life Science, Seoul National University) ;
  • Eom, Chang-Deuk (Division of Wood Engineering, Department of Forest Products, Korea Forest Research Institute) ;
  • Park, Jun-Ho (Department of Forest Science, College of Agriculture & Life Science, Seoul National University) ;
  • Chang, Yoon-Seong (Department of Forest Science, College of Agriculture & Life Science, Seoul National University) ;
  • Kim, Kwang-Mo (Division of Wood Engineering, Department of Forest Products, Korea Forest Research Institute) ;
  • Kang, Chun-Won (Department of Housing Environmental Design, and Research Institute of Human Ecology, College of Human Ecology, Chonbuk National University) ;
  • Yeo, Hwan-Myeong (Department of Forest Science, College of Agriculture & Life Science, Seoul National University)
  • 박용건 (서울대학교 농업생명과학대학 산림과학부) ;
  • 엄창득 (국립산림과학원 녹색자원이용부 재료공학과) ;
  • 박준호 (서울대학교 농업생명과학대학 산림과학부) ;
  • 장윤성 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김광모 (국립산림과학원 녹색자원이용부 재료공학과) ;
  • 강춘원 (전북대학교 생활과학대학 주거환경학과, 전북대학교 인간생활과학연구소) ;
  • 여환명 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2012.02.21
  • Accepted : 2012.07.12
  • Published : 2012.07.25

Abstract

In this study, the method for heat treating wood using superheated steam (SHS) was designed and applied. The physical and mechanical properties of Korean Pine (Pinus koraiensis Siebold & Zucc.) lumber heat-treated by SHS at $170^{\circ}C$ and 0.4 MPa for 10 hours were compared with those of non-treated and normal heat-treated wood. The amount of adsorbed water and equilibrium moisture content of the SHS treated wood were lower than non-treated wood. On the other hand the compressive strength parallel to grain and the bending strength of SHS treated wood were higher than those of non-treated wood. The hygroscopicity of SHS treated wood was similar to normal heat treated wood at $220^{\circ}C$. Internal checks that often occur during normal heat treatment were not developed at SHS treatment. Also, SHS treatment are effective in control of internal checks occurrence and resin exudation.

본 연구에서는 과열증기를 이용한 열처리 공정 제어 방법을 설계하고 적용하였다. $170^{\circ}C$, 0.4 MPa 조건의 과열증기에서 약 10시간 동안 열처리한 잣나무 판재의 물리 및 역학적 성질 변화를 무처리재 및 $220^{\circ}C$ 상압조건에서 일반 열처리한 목재와 비교하였다. 과열증기 처리재는 무처리재에 비해서 수분 흡습량 및 평형함수율이 낮아졌으며, 종압축 강도 및 휨 강도가 증가하였다. 흡습성은 일반 열처리재와 비슷하였으며, 일반 열처리 시 발생하기 쉬운 내부 할렬은 발생하지 않았다. 또한 과열증기 처리에 의해서 잣나무 내부에 있는 다량의 송진이 제거되는 효과도 나타내었다.

Keywords

References

  1. 김광모, 박정환, 박병수, 손동원, 박주생, 김운섭, 김병남, 심상로. 2009. 삼나무 열처리재의 물리 및 역학적 특성. 목재공학. 37(4): 330-339.
  2. 김광모, 박정환, 박병수, 손동원, 박주생, 김운섭, 김병남, 심상로. 2010. 백합나무 열처리재의 물리 및 역학적 특성. 목재공학. 38(1): 17-26.
  3. 김옥신, 이동현, 전원표. 2008. 과열 증기 이용 친환경 건조기술. Korean Chem. Eng. Res., 46(2): 258-273.
  4. 장상식. 2000. 함수율과 섬유경사각이 목재의 압축강도 및 초음파 전달속도에 미치는 영향. 목재공학. 28(2): 10-18.
  5. Cooper, P. 2009. High Temperature Treated Wood. Value to Wood Research Program Poster Presentation.
  6. Garrote, G., H. Dominguez, and J. C. Parajo. 1999. Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff. 57(3): 191-202. https://doi.org/10.1007/s001070050039
  7. Mujumdar, A. S. 1990. CEA Report, 816 U 671, Montreal, Canada.
  8. Mujumdar, A. S. 1995. Handbook of Industrial Drying, Second Edition, Marcel Dekker, Inc. New York.
  9. Shibata, H. and Mujumdar, A. S. 1994. Steam Drying Technologies: Japanese R & D. Drying Technology. 12(6): 1485-1524. https://doi.org/10.1080/07373939408961017
  10. Woods, B., H. Hussain, and A. S. Mujumdar. 1994. Technoeconomic Assessment of Potential Superheated Steam Drying Applications In Canada. Canadian Electrical Assocition Report, 913U888. 120.
  11. 한국표준협회. 2004. KS F 2203. 목재의 수축률 시험 방법.
  12. 한국표준협회. 2004. KS F 2205. 목재의 흡습성 시험 방법.
  13. 한국표준협회. 2004. KS F 2206. 목재의 압축 시험 방법.
  14. 한국표준협회. 2004. KS F 2208. 목재의 휨 시험 방법.

Cited by

  1. Change of Dimensional Stability of Thermally Compressed Korean Pine (Pinus koraiensis Sieb. et Zucc.) Wood by Heat Treatment vol.43, pp.4, 2015, https://doi.org/10.5658/WOOD.2015.43.4.470
  2. A Study on Dimensional Stability and Thermal Performance of Superheated Steam Treated and Thermal Compressed Wood vol.44, pp.2, 2016, https://doi.org/10.5658/WOOD.2016.44.2.184
  3. Evaluation of Physico-Mechanical Properties and Durability of Larix kaempferi Wood Heat-Treated by Hot Air vol.43, pp.3, 2015, https://doi.org/10.5658/WOOD.2015.43.3.334
  4. Investigation of the Color Change and Physical Properties of Heat-treated Pinus koraiensis Square Lumbers vol.42, pp.1, 2014, https://doi.org/10.5658/WOOD.2014.42.1.13
  5. Review on The Measurement of Wood Shrinkage vol.43, pp.6, 2015, https://doi.org/10.5658/WOOD.2015.43.6.746
  6. Interfacial and Mechanical properties of Different Heat Treated Wood and Evaluation of Bonding Property between Stone and Wood for Rock Bed vol.16, pp.2, 2015, https://doi.org/10.17702/jai.2015.16.2.69
  7. Research Trend of The Heat-Treatment of Wood for Improvement of Dimensional Stability and Resistance to Biological Degradation vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.457
  8. Performance Evaluation of Bending Strength of Curved Composite Glulams Made of Korean White Pine vol.43, pp.4, 2015, https://doi.org/10.5658/WOOD.2015.43.4.463
  9. Hardness and Dimensional Stability of Thermally Compressed Domestic Korean Pine vol.43, pp.1, 2015, https://doi.org/10.5658/WOOD.2015.43.1.68