DOI QR코드

DOI QR Code

Bivariate ROC Curve and Optimal Classification Function

  • Hong, C.S. (Department of Statistics, Sungkyunkwan University) ;
  • Jeong, J.A. (Research Institute of Applied Statistics, Sungkyunkwan University)
  • Received : 2012.05.14
  • Accepted : 2012.07.13
  • Published : 2012.07.31

Abstract

We propose some methods to obtain optimal thresholds and classification functions by using various cutoff criterion based on the bivariate ROC curve that represents bivariate cumulative distribution functions. The false positive rate and false negative rate are calculated with these classification functions for bivariate normal distributions.

Keywords

References

  1. Connell, F. A. and Koepsell, T. D. (1985). Measures of gain in certainty from a diagnostic test, American Journal of Epidemiology, 121, 744-753. https://doi.org/10.1093/aje/121.5.744
  2. Hong, C. S. and Joo, J. S. (2010). Optimal thresholds from non-normal mixture, The Korean Journal of Applied Statistics, 23, 943-953. https://doi.org/10.5351/KJAS.2010.23.5.943
  3. Hong, C. S., Kim, G. C. and Jeong, J. A. (2012). Bivariate ROC curve, The Korean Journal of Applied Statistics, 19, 277-286. https://doi.org/10.5351/CKSS.2012.19.2.277
  4. Krzanowski, W. J. and Hand, D. J. (2009). ROC Curves for Continuous Data, Chapman & Hall/CRC, Monographs on Statistics & Applied Probability, 111, Florida.
  5. Lambert, J. and Lipkovich, I. (2008). A macro for getting more out of your ROC curve, SAS Global Forum, 231.
  6. Perkins, N. J. and Schisterman, E. F. (2006). The inconsistency of "Optimal" cutpoints obtained using two criteria based on the receiver operating characteristic curve, American Journal of Epidemiology, 163, 670-675. https://doi.org/10.1093/aje/kwj063
  7. Youden, W. J. (1950). Index for rating diagnostic test, Cancer, 3, 32-35. https://doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3