References
- Gijbels, I. and Goderniaux, A. C. (2004). Bandwidth selection for change point estimation in nonparametric regression, Technometics, 46, 76-86. https://doi.org/10.1198/004017004000000130
- Gijbels, I., Hall, P. and Kneip, A. (1999). On the estimation of jump points in smooth curves, The Annals of the Institute of Statistical Mathematics, 51, 231-251. https://doi.org/10.1023/A:1003802007064
- Gijbels, I., Lambert, A. and Qiu, P. (2007). Jump-preserving regression and smoothing using local linear fitting: A compromise, Annals of the Institute of Statistical Mathematics, 59, 235-272. https://doi.org/10.1007/s10463-006-0045-9
- Park, D. (2009a). Comparison of jump-preserving smoothing and smoothing based on jump detector, Communications of the Korean Statistical Society, 16, 519-528. https://doi.org/10.5351/CKSS.2009.16.3.519
- Park, D. (2009b). Bandwidth selection for local smoothing jump detector, Communications of the Korean Statistical Society, 16, 1047-1054. https://doi.org/10.5351/CKSS.2009.16.6.1047
- Qiu, P. (2005). Image Processing and Jump Regression Analysis, John Wiley & Sons, New Jersey.
- Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice and Visualization, Wiley-Interscience, New York.
- Zhang, B., Su, Z. and Qiu, P. (2009). On jump detection in regression curves using local polynomial kernel estimation, Pakistan Journal of Statistics, 25, 505-528.
- Wu, J. S. and Chu, C. K. (1993). Kernel type estimators of jump points and values of a regression function, The Annals of Statistics, 21, 1545-1566. https://doi.org/10.1214/aos/1176349271