DOI QR코드

DOI QR Code

Synthesis of Metal Oxide Semiconductor Nanostructures and Their Gas Sensing Properties

금속 산화물 반도체 나노구조의 합성과 가스 감응 특성

  • Choi, Kwon-Il (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
  • Received : 2012.07.03
  • Accepted : 2012.07.24
  • Published : 2012.08.01

Abstract

The prepartion of various metal oxide nanostructures via hydrothermal method, hydrolysis, thermal evaporation and electrospinning and their applications to chemoresistive sensors have been investigated. Hierarchical and hollow nanostructures prepared by hydrothermal method and hydrolysis showed the high response and fast responding kinetics on account of their high gas accessibility. Thermal evaporation and electrospinning provide the facile routes to prepare catalyst-loaded oxide nanowires and nanofibers, respectively. The loading of noble metal and metal oxide catalyst were effective to achieve rapid response/recovery and selective gas detection.

Keywords

References

  1. I. S. Hwang, J. K. Choi, S. J. Kim, K. Y. Dong, J. H. Kwon, B. K. Ju, and J. H. Lee, Sensor. Actuat., B142, 105 (2009).
  2. J. K. Srivastava, P. Pandey, V. N. Mishra, and R. Dwivedi, Solid State Sciences, 11, 1602 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.06.014
  3. S. J. Kim, I. S. Hwang, C. W. Na, I. D. Kim, Y. C. Kang, and J. H. Lee, J. Mater. Chem., 21, 18477 (2011). https://doi.org/10.1039/c1jm90172a
  4. Z. Bai, C. Xie, M. Hu, and S. Zhang, Physica. E, 41, 235 (2008). https://doi.org/10.1016/j.physe.2008.07.019
  5. V. V. Sysoev, T. Schneider, J. Goschnick, I. Kiselev, W. Habicht, H. Hahn, E. Strelcov, and A. Kolmakov, Sensor. Actuat., B139, 699 (2009).
  6. H. R. Kim, K. I. Choi, J. H. Lee, and S. A. Akbar, Sensor. Actuat., B136, 138 (2009).
  7. C. S. Moon, H. R. Kim, G. Auchterlonie, J. Drennan, and J. H. Lee, Sensor. Actuat., B131, 556 (2008).
  8. C. Wang, C. Xiangfeng, and W. Mingmei, Sensor. Actuat., B120, 508 (2007).
  9. H. R. Kim, K. I. Choi, K. M. Kim, I. D. Kim, G. Cao, and J. H. Lee, Chem. Commun., 46, 5061 (2010). https://doi.org/10.1039/c0cc00213e
  10. J. Qiu, M. Guo, Y. Feng, and X. Wang, Electrochim. Acta, 56, 5776 (2011). https://doi.org/10.1016/j.electacta.2011.04.059
  11. M. Shi, X. Pan, W. Qiu, D. Zheng, M. Xu, and H. Chen, Inter. J. Hydrogen Energy, 36, 15153 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.145
  12. N. G. Cho, D. J. Yang, M. J. Jin, H. G Kim, H. L. Tuller, and I. D Kim, Sens. Actuators B, 160, 1468 (2011). https://doi.org/10.1016/j.snb.2011.07.035
  13. J. Moon, J. A. Park, S. J. Lee, T. Zyung, and I. D. Kim, Sensor. Actuat., B149, 301 (2010).
  14. G. Neri, A. Bonavita, G. Micali, N. Donato, F. A. Deorsola, P. Mossino, I. Amato, and B. D. Benedetti, Sensor. Actuat., B117, 196 (2006).
  15. Z. Zhu, R. C. Deka, A. Chutia, R. Sahnoun, H. Tsuboi, M. Koyama, N. Hatakeyama, A. Endou, H. Takaba, C. A. D. Carpio, M. Kubo, and A. Miyamoto, J. Phy. Chem. Solids, 70, 1248 (2009). https://doi.org/10.1016/j.jpcs.2009.07.012
  16. H. J. Kim, K. I. Choi, A. Pan, I. D. Kim, H. R. Kim, K. M. Kim, C. W. Na, G. Cao, and J. H. Lee, J. Mater. Chem., 21, 6549 (2011). https://doi.org/10.1039/c0jm03516e
  17. C. W. Na, H. S. Woo, I. D. Kim, and J. H. Lee, Chem. Commun., 47, 5148 (2011). https://doi.org/10.1039/c0cc05256f