References
- Z. Shen, Z. Zhao, H. Peng, and M. Nygren, "Formation of Tough Interlocking Microstructures in Silicon Nitride Ceramics by Dynamic Ripening," Nature, 417 266-9 (2002). https://doi.org/10.1038/417266a
- D. P. Thompson, "Materials Science: Cooking up Tougher Ceramics," Nature, 417 237 (2002). https://doi.org/10.1038/417237a
- S. Bhaduri and S. B. Bhaduri, "Recent Developments in Ceramic Nanocomposites," JOM, January, 44-50 (1998)
- M. Sternitzke, "Structural Ceramic Nanocomposites," J. Eur. Ceram. Soc., 17 1061-82 (1997). https://doi.org/10.1016/S0955-2219(96)00222-1
- B. Djuricic,W. Lacom, G. Krumpel, and M. Brabetz, Nano-Science, It's time 02/02, 1-8.
- C. G. Papakonstantinou, P. Balaguru, and R. E. Lyon, "Comparative Study of High Temperature Composites," Composites: Part B, 32 637 (2001). https://doi.org/10.1016/S1359-8368(01)00042-7
- A.K. Geim and K.S. Novoselov, "The Rise of Graphene," Nat. Mater., 6 183-91 (2007). https://doi.org/10.1038/nmat1849
- M. Segal, "Selling Graphene by the Ton," Nat. Nanotechnol., 4 612-4 (2009). https://doi.org/10.1038/nnano.2009.279
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau:, "Superior Thermal Conductivity of Single-layer Graphene," Nano Lett., 8 902-7 (2008). https://doi.org/10.1021/nl0731872
- C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj:, "Graphene: the New Two-dimensional Nanomaterial," Angew. Chem. Int. Ed., 48 [42] 7752-77 (2009). https://doi.org/10.1002/anie.200901678
- C. Soldano, A. Mahmood, and E. Dujardin:, "Production Properties and Potential of Graphene," Carbon, 48 2127-50 (2010). https://doi.org/10.1016/j.carbon.2010.01.058
- T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud'Homme, and L.C. Brinson:, "Functionalized Graphene Sheets for Polymer Nanocomposites," Nat. Nanotechnol., 3 327-31 (2008). https://doi.org/10.1038/nnano.2008.96
-
Y. Fan, L. Wang, J. Lib, J. Lia, S. Sun, F. Chen, L. Chen, and W. Jiang, "Preparation and Electrical Properties of Graphene Nanosheet/
$Al_2O_3$ Composites," Carbon, 48 1743-9 (2010). https://doi.org/10.1016/j.carbon.2010.01.017 - A. Peigney, Ch. Laurent, E. Flahaut, and A. Rousset:, "Carbon Nanotubes in Novel Ceramic Matrix Nanocomposites," Ceram. Int., 26 [6] 667-83 (2000).
- R.Z. Ma, J. Wu, B.Q. Wei, J. Liang, and D.H. Wu, "Processing and Properties of Carbon Nanotubes-nano-SiC ceramic," J. Mater. Sci., 33 [21] 5243-6 (1998). https://doi.org/10.1023/A:1004492106337
-
C. Balazsi, B. Fenyi, N. Hegman, Z. Kover, F. Weber, Z. Vertesy, Z. Konya, I. Kiricsi, L.P. Biro, and P. Arato, "Development of CNT/
$Si_3N_4$ Composites with Improved Mechanical and Electrical Properties," Composites: Part B, 37 418-24 (2006). https://doi.org/10.1016/j.compositesb.2006.02.006 - S. Pasupuleti, R. Peddetti, S. Santhanam, K.P. Jen, N.Z. Wing, M. Hecht, and P.J. Halloran, "Toughening Behavior in a Carbon Nanotube Reinforced Silicon Nitride Composite," Mater. Sci. Eng., A491 224-9 (2008).
- G.D. Zhan, J.D. Kuntz, J. Wan, and A.K. Mukherjee, Nat. Mater., 61 [2] 38-42 (2003).
- Z. Xia, L. Riester, W.A. Curtin, H. Li, B.W. Sheldon, J. Liang, B. Chang, and J.M. Xu, "Direct Observation of Toughening Mechanisms in Carbon Nanotube Ceramic Matrix Composites," Acta Mater., 52 931-44 (2004). https://doi.org/10.1016/j.actamat.2003.10.050
- G. Yamamoto, M. Omori, T. Hashida, and H. Kimura, "A Novel Structure for Carbon Nanotube Reinforced Alumina Composites with Improved Mechanical Properties," Nanotechnology, 19 1-7 (2008).
- I. Ahmad, A. Kennedy, and Y.Q. Zhu, "Carbon Nanotubes Toughened Aluminium Oxide Nanocomposites," J. Eur. Ceram. Soc., 30 865-73 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.09.032
- X. Wang, N.P. Padture, and H. Tanaka:, "Contact-damage-resistant Ceramic/Single-wall Carbon Nanotubes and Ceramic/Graphite Composites," Nat. Mater., 3 539-44 (2004). https://doi.org/10.1038/nmat1161
- J. Dusza, G. Blugan, J. Morgiel, J. Kuebler, F. Inam, T. Peijs, et al., "Hot Pressed and Spark Plasma Sintered Zirconia/carbon Nanofiber Composites," J. Eur. Ceram. Soc., 29 [15] 3177-84 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.05.030
- J. Gonzalez-Julian, Y. Iglesias, A.C. Caballero, M. Belmonte, L. Garzon, C. Ocal, P. Miranzo, and M.I. Osendi, "Multi-scale Electrical Response of Silicon Nitride/multiwalled Carbon Nanotubes Composites," Comp. Sci. Technol., 71 [1] 60-6 (2011). https://doi.org/10.1016/j.compscitech.2010.10.004
-
S. Yoshio, J. Tatami, T. Wakihara, T. Yamakawa, H. Nakano, K. Komeya, and T. Meguro, "Effect of CNT Quantity and Sintering Temperature on Electrical and Mechanical Properties of CNT-dispersed
$Si_3N_4$ Ceramics," J. Ceram. Soc. Jpn., 119 70-5 (2011). https://doi.org/10.2109/jcersj2.119.70 - J. Tatami, T. Katashima, K. Komeya, T. Meguro, and T. Wakihara, "Electrically Conductive CNT-Dispersed Silicon Nitride Ceramics," J. Am. Ceram. Soc., 88 2889-93 (2005). https://doi.org/10.1111/j.1551-2916.2005.00539.x
- E.L. Corral, H. Wang, J. Garay, Z. Munir, and E.V. Barrera, "Effect of Single-walled Carbon Nanotubes on Thermal And Electrical Properties of Silicon Nitride Processed Using Spark Plasma Sintering," J. Eur. Ceram. Soc., 31 [3] 391-400 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.10.020
-
P. Hvizdos, A. Duszova, V. Puchy, O. Tapaszto, P. Kun, and Cs. Balazsi:, "Wear Behavior of
$ZrO_2$ -CNF and$Si_3N_4$ -CNT Nanocomposites," Key Eng. Mater., 465 495-8 (2011). https://doi.org/10.4028/www.scientific.net/KEM.465.495 - R. Poyato, A.L. Vasiliev, N.P. Padture, H. Tanaka, and T. Nishimura, "Aqueous Colloidal Processing of Single-Wall Carbon Nanotubes and their Composites with Ceramics," Nanotechnology, 17 1770-7 (2006). https://doi.org/10.1088/0957-4484/17/6/038
- E.L. Corral, L. Cesarano, A. Shyam, E. Lara-Curzio, N. Bell, J. Stuecker, N. Perry, M. Di Prima, Z. Munir, J. Garay, and E.V. Barrera:, "Engineered Nanostructures for Multifunctional Single-walled Carbon Nanotube Reinforced Silicon Nitride Nanocomposites," J. Am. Ceram. Soc., 91 3129-37 (2008). https://doi.org/10.1111/j.1551-2916.2008.02533.x
- Cs. Balazsi, Z. Konya, F. Weber, L. P. Biro, and P. Arato, "Preparation and Characterization of Carbon Nanotube Reinforced Silicon Nitride Composites," Mat. Sci. Eng., C23 [6-8] 1133 (2003).
- C. Knieke, A. Berger, M. Voigt, R.N. Klupp Taylor, J. Rohrl, and W. Peukert, "Scalable Production of Graphene Sheets by Mechanical Delamination," Carbon, 48 3196-204 (2010). https://doi.org/10.1016/j.carbon.2010.05.003
- C. Balazsi, E. Dolekcekic, Z. Kover et al., "Comparison of Silicon Nitrides with Carbon Additions Prepared by Two Different Sintering Methods," Key Eng. Mat., 290 242-5 (2005). https://doi.org/10.4028/www.scientific.net/KEM.290.242
- C. Balazsi, et al., "Application of Carbon Nanotubes to Silicon Nitride Matrix Reinforcements," Curr. Appl. Phys., 6 124-30 (2006). https://doi.org/10.1016/j.cap.2005.07.024
- O. Koszor, L. Tapaszto, M. Marko, and Cs. Balazsi, "Characterizing the Global Dispersion of Carbon Nanotubes in Ceramic Matrix Nanocomposites," App. Phys. Lett., 93 [20] 201910 (2008). https://doi.org/10.1063/1.3029746
- Cs. Balazsi, Z. Konya, Zs. Kasztovszky, F. Weber, Z. Vertesy, L. P. Biro, I. Kiricsi, and P. Arato, Examination of carbon nanotube reinforced silicon nitride composites, Proceedings of Fifth International Conference on High Temperature Ceramic Matrix Composites (HTCMC-5) New Frontiers and Horizons, p. 107-12, published by The American Ceramic Society, Seattle, Washington, USA, 2004.
-
O. Koszor, F. Weber, Z. Vertesy, and Z. E. Horvath et al., "Preparation of
$Si_3N_4$ Composites with Single wall Carbon Nanotube and Exfoliated Graphite," Mater. Sci. Forum, 589 409-14 (2008). https://doi.org/10.4028/www.scientific.net/MSF.589.409 - P. Kun, O. Tapaszto, F. Weber, and C. Balazsi, Ceramics International, 38 211-6 (2012). https://doi.org/10.1016/j.ceramint.2011.06.051
- J. Lu, I. Do, H. Fukushima, I. Lee, and L.T. Drzal, "Stable Aqueous Suspension and Self-assembly of Graphite Nanoplatelets Coated with Various Polyelectrolytes," J. Nanomater., 186486 1-11 (2010).
- http://www.xgsciences.com
- http://angstronmaterials.com
- J.M. Brown, et al., "Hierarchical Morphology of Carbon single-walled Nanotubes During Sonication in an Alphiatic diamine," Polymer, 46 10854 (2005). https://doi.org/10.1016/j.polymer.2005.08.089
- O. Tapaszto et al., "Dispersion Patterns of Graphene and Carbon Nanotubes in Ceramic Matrix Composites," Chem. Phys. Lett., 511 340-3 (2011). https://doi.org/10.1016/j.cplett.2011.06.047
- D.W. Schaefer, and R.S. Justice, "How Nano are Nanocomposites," Macromolecules, 40 8501-17 (2007). https://doi.org/10.1021/ma070356w
- B. Fenyi, O. Koszor, and Cs. Balazsi, "Ceramic Based Nanocomposites for Functional Applications," NANO, 3 [5] 323-8 (2008). https://doi.org/10.1142/S1793292008001040
- L.S.Walker, V.R.Marotto, M.A.Rafiee, N.Koratkar, and E.L.Corral, "Toughening in Graphene Ceramic Composites," ACS Nano, 5 [4] 3182-90 (2011). https://doi.org/10.1021/nn200319d
- C. Ramirez, L.Garzon, P.Miranzo, M.I.Osendi, and C. Ocal, "Electrical Conductivity Maps in Graphene Nanoplatelet/ silicon Nitride Composites Using Conducting Scanning Force Microscopy," Carbon, 49 3873 (2011). https://doi.org/10.1016/j.carbon.2011.05.025
- O. Maleka, J. Gonzalez-Julian, J. Vleugels, W. Vanderauwera, B. Lauwers, and M. Belmonte, Materials Today, 14 [10] 496-501 (2011). https://doi.org/10.1016/S1369-7021(11)70214-0
Cited by
- Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites vol.5, pp.1, 2015, https://doi.org/10.3390/nano5010090
- Promising high-thermal-conductivity substrate material for high-power electronic device: silicon nitride ceramics vol.39, pp.5, 2012, https://doi.org/10.1007/s12598-020-01376-7
- Silicon Nitride-Based Composites with the Addition of CNTs—A Review of Recent Progress, Challenges, and Future Prospects vol.13, pp.12, 2012, https://doi.org/10.3390/ma13122799
- Chemical design of onion-like carbon-silicon diimide polymer composites vol.2, pp.None, 2012, https://doi.org/10.1017/exp.2021.13
- Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride-Zirconia-Graphene Composite Using Multi-Scale and In-Situ Microscopy vol.11, pp.2, 2012, https://doi.org/10.3390/nano11020285