DOI QR코드

DOI QR Code

Silicon Nitride Composites with Different Nanocarbon Additives

  • Balazsi, Csaba (Ceramics and Nanocomposites Department, Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences)
  • Received : 2012.05.22
  • Accepted : 2012.07.16
  • Published : 2012.07.31

Abstract

This paper explores the use of a variety of carbon nanoparticles to impart electrical, thermal conductivity, good frictional properties to silicon nitride matrices. We used the highly promising types of carbon as carbon nanotubes, exfoliated graphene and carbon black nanograins. A high-efficiency attritor mill has also been used for proper dispersion of second phases in the matrix. The sintered silicon nitride composites retained the mechanical robustness of the original systems. Bending strength as high as 700 MPa was maintained and an electrical conductivity of 10 S/m was achieved in the case of 3 wt% multiwall carbon nanotube addition. Electrically conductive silicon nitride ceramics were realized by using carbon nanophases. Examples of these systems, methods of fabrication, electrical percolation, mechanical, thermal and tribological properties are discussed.

Keywords

References

  1. Z. Shen, Z. Zhao, H. Peng, and M. Nygren, "Formation of Tough Interlocking Microstructures in Silicon Nitride Ceramics by Dynamic Ripening," Nature, 417 266-9 (2002). https://doi.org/10.1038/417266a
  2. D. P. Thompson, "Materials Science: Cooking up Tougher Ceramics," Nature, 417 237 (2002). https://doi.org/10.1038/417237a
  3. S. Bhaduri and S. B. Bhaduri, "Recent Developments in Ceramic Nanocomposites," JOM, January, 44-50 (1998)
  4. M. Sternitzke, "Structural Ceramic Nanocomposites," J. Eur. Ceram. Soc., 17 1061-82 (1997). https://doi.org/10.1016/S0955-2219(96)00222-1
  5. B. Djuricic,W. Lacom, G. Krumpel, and M. Brabetz, Nano-Science, It's time 02/02, 1-8.
  6. C. G. Papakonstantinou, P. Balaguru, and R. E. Lyon, "Comparative Study of High Temperature Composites," Composites: Part B, 32 637 (2001). https://doi.org/10.1016/S1359-8368(01)00042-7
  7. A.K. Geim and K.S. Novoselov, "The Rise of Graphene," Nat. Mater., 6 183-91 (2007). https://doi.org/10.1038/nmat1849
  8. M. Segal, "Selling Graphene by the Ton," Nat. Nanotechnol., 4 612-4 (2009). https://doi.org/10.1038/nnano.2009.279
  9. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau:, "Superior Thermal Conductivity of Single-layer Graphene," Nano Lett., 8 902-7 (2008). https://doi.org/10.1021/nl0731872
  10. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj:, "Graphene: the New Two-dimensional Nanomaterial," Angew. Chem. Int. Ed., 48 [42] 7752-77 (2009). https://doi.org/10.1002/anie.200901678
  11. C. Soldano, A. Mahmood, and E. Dujardin:, "Production Properties and Potential of Graphene," Carbon, 48 2127-50 (2010). https://doi.org/10.1016/j.carbon.2010.01.058
  12. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud'Homme, and L.C. Brinson:, "Functionalized Graphene Sheets for Polymer Nanocomposites," Nat. Nanotechnol., 3 327-31 (2008). https://doi.org/10.1038/nnano.2008.96
  13. Y. Fan, L. Wang, J. Lib, J. Lia, S. Sun, F. Chen, L. Chen, and W. Jiang, "Preparation and Electrical Properties of Graphene Nanosheet/$Al_2O_3$ Composites," Carbon, 48 1743-9 (2010). https://doi.org/10.1016/j.carbon.2010.01.017
  14. A. Peigney, Ch. Laurent, E. Flahaut, and A. Rousset:, "Carbon Nanotubes in Novel Ceramic Matrix Nanocomposites," Ceram. Int., 26 [6] 667-83 (2000).
  15. R.Z. Ma, J. Wu, B.Q. Wei, J. Liang, and D.H. Wu, "Processing and Properties of Carbon Nanotubes-nano-SiC ceramic," J. Mater. Sci., 33 [21] 5243-6 (1998). https://doi.org/10.1023/A:1004492106337
  16. C. Balazsi, B. Fenyi, N. Hegman, Z. Kover, F. Weber, Z. Vertesy, Z. Konya, I. Kiricsi, L.P. Biro, and P. Arato, "Development of CNT/$Si_3N_4$ Composites with Improved Mechanical and Electrical Properties," Composites: Part B, 37 418-24 (2006). https://doi.org/10.1016/j.compositesb.2006.02.006
  17. S. Pasupuleti, R. Peddetti, S. Santhanam, K.P. Jen, N.Z. Wing, M. Hecht, and P.J. Halloran, "Toughening Behavior in a Carbon Nanotube Reinforced Silicon Nitride Composite," Mater. Sci. Eng., A491 224-9 (2008).
  18. G.D. Zhan, J.D. Kuntz, J. Wan, and A.K. Mukherjee, Nat. Mater., 61 [2] 38-42 (2003).
  19. Z. Xia, L. Riester, W.A. Curtin, H. Li, B.W. Sheldon, J. Liang, B. Chang, and J.M. Xu, "Direct Observation of Toughening Mechanisms in Carbon Nanotube Ceramic Matrix Composites," Acta Mater., 52 931-44 (2004). https://doi.org/10.1016/j.actamat.2003.10.050
  20. G. Yamamoto, M. Omori, T. Hashida, and H. Kimura, "A Novel Structure for Carbon Nanotube Reinforced Alumina Composites with Improved Mechanical Properties," Nanotechnology, 19 1-7 (2008).
  21. I. Ahmad, A. Kennedy, and Y.Q. Zhu, "Carbon Nanotubes Toughened Aluminium Oxide Nanocomposites," J. Eur. Ceram. Soc., 30 865-73 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.09.032
  22. X. Wang, N.P. Padture, and H. Tanaka:, "Contact-damage-resistant Ceramic/Single-wall Carbon Nanotubes and Ceramic/Graphite Composites," Nat. Mater., 3 539-44 (2004). https://doi.org/10.1038/nmat1161
  23. J. Dusza, G. Blugan, J. Morgiel, J. Kuebler, F. Inam, T. Peijs, et al., "Hot Pressed and Spark Plasma Sintered Zirconia/carbon Nanofiber Composites," J. Eur. Ceram. Soc., 29 [15] 3177-84 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.05.030
  24. J. Gonzalez-Julian, Y. Iglesias, A.C. Caballero, M. Belmonte, L. Garzon, C. Ocal, P. Miranzo, and M.I. Osendi, "Multi-scale Electrical Response of Silicon Nitride/multiwalled Carbon Nanotubes Composites," Comp. Sci. Technol., 71 [1] 60-6 (2011). https://doi.org/10.1016/j.compscitech.2010.10.004
  25. S. Yoshio, J. Tatami, T. Wakihara, T. Yamakawa, H. Nakano, K. Komeya, and T. Meguro, "Effect of CNT Quantity and Sintering Temperature on Electrical and Mechanical Properties of CNT-dispersed $Si_3N_4$ Ceramics," J. Ceram. Soc. Jpn., 119 70-5 (2011). https://doi.org/10.2109/jcersj2.119.70
  26. J. Tatami, T. Katashima, K. Komeya, T. Meguro, and T. Wakihara, "Electrically Conductive CNT-Dispersed Silicon Nitride Ceramics," J. Am. Ceram. Soc., 88 2889-93 (2005). https://doi.org/10.1111/j.1551-2916.2005.00539.x
  27. E.L. Corral, H. Wang, J. Garay, Z. Munir, and E.V. Barrera, "Effect of Single-walled Carbon Nanotubes on Thermal And Electrical Properties of Silicon Nitride Processed Using Spark Plasma Sintering," J. Eur. Ceram. Soc., 31 [3] 391-400 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.10.020
  28. P. Hvizdos, A. Duszova, V. Puchy, O. Tapaszto, P. Kun, and Cs. Balazsi:, "Wear Behavior of $ZrO_2$-CNF and $Si_3N_4$-CNT Nanocomposites," Key Eng. Mater., 465 495-8 (2011). https://doi.org/10.4028/www.scientific.net/KEM.465.495
  29. R. Poyato, A.L. Vasiliev, N.P. Padture, H. Tanaka, and T. Nishimura, "Aqueous Colloidal Processing of Single-Wall Carbon Nanotubes and their Composites with Ceramics," Nanotechnology, 17 1770-7 (2006). https://doi.org/10.1088/0957-4484/17/6/038
  30. E.L. Corral, L. Cesarano, A. Shyam, E. Lara-Curzio, N. Bell, J. Stuecker, N. Perry, M. Di Prima, Z. Munir, J. Garay, and E.V. Barrera:, "Engineered Nanostructures for Multifunctional Single-walled Carbon Nanotube Reinforced Silicon Nitride Nanocomposites," J. Am. Ceram. Soc., 91 3129-37 (2008). https://doi.org/10.1111/j.1551-2916.2008.02533.x
  31. Cs. Balazsi, Z. Konya, F. Weber, L. P. Biro, and P. Arato, "Preparation and Characterization of Carbon Nanotube Reinforced Silicon Nitride Composites," Mat. Sci. Eng., C23 [6-8] 1133 (2003).
  32. C. Knieke, A. Berger, M. Voigt, R.N. Klupp Taylor, J. Rohrl, and W. Peukert, "Scalable Production of Graphene Sheets by Mechanical Delamination," Carbon, 48 3196-204 (2010). https://doi.org/10.1016/j.carbon.2010.05.003
  33. C. Balazsi, E. Dolekcekic, Z. Kover et al., "Comparison of Silicon Nitrides with Carbon Additions Prepared by Two Different Sintering Methods," Key Eng. Mat., 290 242-5 (2005). https://doi.org/10.4028/www.scientific.net/KEM.290.242
  34. C. Balazsi, et al., "Application of Carbon Nanotubes to Silicon Nitride Matrix Reinforcements," Curr. Appl. Phys., 6 124-30 (2006). https://doi.org/10.1016/j.cap.2005.07.024
  35. O. Koszor, L. Tapaszto, M. Marko, and Cs. Balazsi, "Characterizing the Global Dispersion of Carbon Nanotubes in Ceramic Matrix Nanocomposites," App. Phys. Lett., 93 [20] 201910 (2008). https://doi.org/10.1063/1.3029746
  36. Cs. Balazsi, Z. Konya, Zs. Kasztovszky, F. Weber, Z. Vertesy, L. P. Biro, I. Kiricsi, and P. Arato, Examination of carbon nanotube reinforced silicon nitride composites, Proceedings of Fifth International Conference on High Temperature Ceramic Matrix Composites (HTCMC-5) New Frontiers and Horizons, p. 107-12, published by The American Ceramic Society, Seattle, Washington, USA, 2004.
  37. O. Koszor, F. Weber, Z. Vertesy, and Z. E. Horvath et al., "Preparation of $Si_3N_4$ Composites with Single wall Carbon Nanotube and Exfoliated Graphite," Mater. Sci. Forum, 589 409-14 (2008). https://doi.org/10.4028/www.scientific.net/MSF.589.409
  38. P. Kun, O. Tapaszto, F. Weber, and C. Balazsi, Ceramics International, 38 211-6 (2012). https://doi.org/10.1016/j.ceramint.2011.06.051
  39. J. Lu, I. Do, H. Fukushima, I. Lee, and L.T. Drzal, "Stable Aqueous Suspension and Self-assembly of Graphite Nanoplatelets Coated with Various Polyelectrolytes," J. Nanomater., 186486 1-11 (2010).
  40. http://www.xgsciences.com
  41. http://angstronmaterials.com
  42. J.M. Brown, et al., "Hierarchical Morphology of Carbon single-walled Nanotubes During Sonication in an Alphiatic diamine," Polymer, 46 10854 (2005). https://doi.org/10.1016/j.polymer.2005.08.089
  43. O. Tapaszto et al., "Dispersion Patterns of Graphene and Carbon Nanotubes in Ceramic Matrix Composites," Chem. Phys. Lett., 511 340-3 (2011). https://doi.org/10.1016/j.cplett.2011.06.047
  44. D.W. Schaefer, and R.S. Justice, "How Nano are Nanocomposites," Macromolecules, 40 8501-17 (2007). https://doi.org/10.1021/ma070356w
  45. B. Fenyi, O. Koszor, and Cs. Balazsi, "Ceramic Based Nanocomposites for Functional Applications," NANO, 3 [5] 323-8 (2008). https://doi.org/10.1142/S1793292008001040
  46. L.S.Walker, V.R.Marotto, M.A.Rafiee, N.Koratkar, and E.L.Corral, "Toughening in Graphene Ceramic Composites," ACS Nano, 5 [4] 3182-90 (2011). https://doi.org/10.1021/nn200319d
  47. C. Ramirez, L.Garzon, P.Miranzo, M.I.Osendi, and C. Ocal, "Electrical Conductivity Maps in Graphene Nanoplatelet/ silicon Nitride Composites Using Conducting Scanning Force Microscopy," Carbon, 49 3873 (2011). https://doi.org/10.1016/j.carbon.2011.05.025
  48. O. Maleka, J. Gonzalez-Julian, J. Vleugels, W. Vanderauwera, B. Lauwers, and M. Belmonte, Materials Today, 14 [10] 496-501 (2011). https://doi.org/10.1016/S1369-7021(11)70214-0

Cited by

  1. Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites vol.5, pp.1, 2015, https://doi.org/10.3390/nano5010090
  2. Promising high-thermal-conductivity substrate material for high-power electronic device: silicon nitride ceramics vol.39, pp.5, 2012, https://doi.org/10.1007/s12598-020-01376-7
  3. Silicon Nitride-Based Composites with the Addition of CNTs—A Review of Recent Progress, Challenges, and Future Prospects vol.13, pp.12, 2012, https://doi.org/10.3390/ma13122799
  4. Chemical design of onion-like carbon-silicon diimide polymer composites vol.2, pp.None, 2012, https://doi.org/10.1017/exp.2021.13
  5. Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride-Zirconia-Graphene Composite Using Multi-Scale and In-Situ Microscopy vol.11, pp.2, 2012, https://doi.org/10.3390/nano11020285