DOI QR코드

DOI QR Code

Fabrication and Characterization of UV-curable Conductive Transparent Film with Polyaniline Nanofibers

폴리아닐린 나노섬유를 이용한 광경화형 전도성 투명필름의 제조 및 특성

  • Kim, Sung-Hyun (Department of Advanced Materials Engineering for Informantion & Electronics, Kyung Hee University) ;
  • Song, Ki-Gook (Department of Advanced Materials Engineering for Informantion & Electronics, Kyung Hee University)
  • 김성현 (경희대학교 정보전자신소재공학과) ;
  • 송기국 (경희대학교 정보전자신소재공학과)
  • Received : 2012.04.06
  • Accepted : 2012.05.08
  • Published : 2012.07.25

Abstract

Conductive polyaniline (PANI) nanofibers in UV-curable resin were used for a transparent conductive film. The emeraldine-salt PANI (ES-PANI) nanofibers were prepared by chemical oxidation polymerization of aniline, which could be changed into emeraldine-base PANI by dedoping. EB-PANI nanofibers as a precursor for conductive fillers were thereby transformed into re-dpoed PANI (rES-PANI) by dodecylbenzenesulfonic acid in the UV-curable resin solution. rES-PANI nanofibers have high conductivity and long-term stability in the solution without a defect of nanostructure. The resulting conductive resin solution was proved to be highly stable where no precipitation of rES-PANI fillers was observed over a period of 3 months. The transparent film was spin-casted on a poly(methyl methacrylate) sheet of thickness ca. $5{\mu}m$. A surface resistance of $6.5{\times}10^8{\Omega}/sq$ and transmittance at 550 nm of 91.1% were obtained for the film prepared with a concentration of 1.4 wt% rES-PANI nanofibers in the solution. This transformation process of rES-PANI from ES-PANI by dedoping-redoping can be an alternative method for the preparation of an antistatic protection film with controllable surface resistance and optical transparencies with the PANI concentration in UV-curable solution.

폴리아닐린(PANI) 나노섬유를 전도성 충전제로 사용하여 광경화형 전도성 투명필름을 제조하였다. 화학산화중합(chemical oxidation polymerization)으로 나노섬유 구조의 산화형 폴리아닐린(ES-PANI)을 합성하였다. ES-PANI는 디도핑을 통해 환원형 폴리아닐린(EB-PANI)으로 유도하였다. 이것을 전도성 충전제의 전구체로 사용하여 도데실벤젠설폰산(DBSA)이 포함되어 있는 광경화형 레진에 분산시키면 재도핑된 재산화형 폴리아닐린(rES-PANI)을 얻을 수 있었다. 이런 과정을 통해 나노섬유 형태가 유지되면서 높은 전도성과 분산안정성이 우수한 광경화형 전도성 레진용액을 제조할 수 있었다. 제조된 광경화형 전도성 레진용액은 상온에서 3달 정도 두어도 rES-PANI 충전제의 침전물이 생기지 않았다. 또한 이 용액을 폴리(메틸 메타크릴레이트)(PMMA) 기재 위에 스핀코팅 후 광경화하여 약 $5{\mu}m$ 두께의 전도성 투명필름을 제조하였다. rES-PANI 나노섬유 농도가 1.4 wt%일 때 표면저항 $6.5{\times}10^8{\Omega}/sq$, 550 nm 파장에서 91.1%의 투과도를 보였다. ES-PANI의 디도핑-재도핑(dedoping-redoping) 과정을 통해 광경화형 전도성 레진용액에 분산된 PANI는 농도에 따라 필름표면저항과 광학적 투명도를 조절할 수 있는 대전방지 보호필름을 제작하는 새로운 방법을 제시하였다.

Keywords

Acknowledgement

Supported by : 경희대학교

References

  1. J. Keum, C. S. Ha, and Y. Kim, Macromol. Res., 14, 401 (2006). https://doi.org/10.1007/BF03219101
  2. D. Chaudhuri, A. Kumar, I. Rudra, and D. D. sarma, Adv. Mater., 13, 1548 (2001) https://doi.org/10.1002/1521-4095(200110)13:20<1548::AID-ADMA1548>3.0.CO;2-S
  3. Q. Pei, G. Yu, C. Zhang, Y. Yang, and A. J. Heeger, Science, 269, 1086 (1995). https://doi.org/10.1126/science.269.5227.1086
  4. D. Lee, K. Char, H.-W Rhee, and J. Kim, Polymer(Korea), 24, 29 (2000).
  5. Y. Cao, A. Andereatta, A. J. Heeger, and P. Smith, Polymer, 30, 2305 (1989).
  6. S. Jin, T. H. Tiefel, R. Wolfe, R. C. Sherwood, and J. J. Mottine, Jr., Science, 255, 446 (1992). https://doi.org/10.1126/science.255.5043.446
  7. M. A. Aegerter, N. Al-Dahoudi, A. Solieman, H. Kavak, and P. Oliveira, Mol. Cryst. Liq. Cryst., 417, 105 (2004). https://doi.org/10.1080/15421400490478894
  8. Y. C. Wang and C. Anderson, Macromolecules, 32, 6172 (1999). https://doi.org/10.1021/ma990207g
  9. V. G. Kulkarni, "Transparent conductive coatings", in Handbook of Conducting Polymers, Marcel Dekker, New York, Vol. 2, p 1059 (1998).
  10. C. R. Martins and M. A. D. Paoli, Eur. Polym. J., 41, 2867 (2005). https://doi.org/10.1016/j.eurpolymj.2005.06.016
  11. M. Annala and B. Loefgren, Macromol. Mater. Eng., 291, 848 (2006). https://doi.org/10.1002/mame.200600071
  12. M. E. L. Wonuters, D. P. Wolfs, M. C. Linde, J. H. P. Hovens, and A. H. A. Tinnemans, Prog. Org Coat., 51, 312 (2004). https://doi.org/10.1016/j.porgcoat.2004.07.020
  13. C. R. Graham, P. J. Kinlen, and T. D. Flaim, U.S. Patent 7749603 B2 (2010).
  14. G. Greczynski, T. Kugler, and W. R. Salaneek, Thin Solid Films, 354, 129 (1999). https://doi.org/10.1016/S0040-6090(99)00422-8
  15. S. Ghosh, J. Rasmusson, and O. Inganas, Adv. Mater., 10, 1097 (1998). https://doi.org/10.1002/(SICI)1521-4095(199810)10:14<1097::AID-ADMA1097>3.0.CO;2-M
  16. B. Wessling, Synth. Met., 102, 1396 (1999). https://doi.org/10.1016/S0379-6779(98)00382-8
  17. W. S. Huang, B. D. Humphrey, and A. G. MacDiarmid, J. Chem. Soc., Faraday Trans. 1, 82, 2385 (1986). https://doi.org/10.1039/f19868202385
  18. J. Huang and R. B. Kaner, Chem. Commun., 4, 367 (2006).
  19. J. Huang and R. B. Kaner, J. Am. Chem. Soc., 126, 851 (2004). https://doi.org/10.1021/ja0371754
  20. S. Chen and J. P. Rothstein, J. Non-Newtonian Fluid Mech., 116, 205 (2004). https://doi.org/10.1016/j.jnnfm.2003.08.005
  21. J. Jang, Adv. Polym. Sci., 199, 189 (2006). https://doi.org/10.1007/12_075
  22. J. Tang, X. Jing, B. Wang, and F. Wang, Synth. Met., 24, 231 (1998).
  23. Y. Cao, S. Li, Z. Xue, and D. Guo, Synth. Met., 16, 305 (1986). https://doi.org/10.1016/0379-6779(86)90167-0
  24. Y. Long, Z. Chen, N. Wang, J. Li, and M. Wan, Physica B, 344, 82 (2004). https://doi.org/10.1016/j.physb.2003.09.245
  25. W. S. Huang and A. G. MacDiarmid, Polymer, 34, 1833 (1993). https://doi.org/10.1016/0032-3861(93)90424-9
  26. N.-R. Chiou, L. J. Lee, and A. J. Epstein, Chem. Mater., 19, 3589 (2007). https://doi.org/10.1021/cm070847v

Cited by

  1. Laccase-catalyzed Polymerization of Aniline with Different Soft Templates vol.42, pp.2, 2018, https://doi.org/10.7317/pk.2018.42.2.175