DOI QR코드

DOI QR Code

Glass Transition Temperature and Isothermal Physical Aging of PMMA Thin Films Incorporated with POSS

POSS를 함유한 PMMA 박막의 유리전이온도 및 등온 물리적 시효

  • Jin, Sil-O (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Jong-Keun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 진실로 (금오공과대학교 고분자공학과) ;
  • 이종근 (금오공과대학교 고분자공학과)
  • Received : 2012.01.11
  • Accepted : 2012.02.17
  • Published : 2012.07.25

Abstract

Thin (~650 nm) and ultrathin (~50 nm) films of neat PMMA and PMMA containing 5 wt% of methacryl-polyhedral oligomeric silsesquioxane were prepared in this work. The effects of film thickness and POSS on glass transition temperature ($T_g$) and isothermal physical aging were investigated by means of differential scanning calorimetry (DSC). $T_g$ depression was observed as film thickness was decreased and Ma-POSS molecules were incorporated. Enthalpy relaxation (${\Delta}H_{Relax}$) due to the isothermal physical aging was reduced by ultra-thin film thickness and the addition of Ma-POSS. KWW (Kohlrausch-Williams-Watts) equation was used to fit ${\Delta}H_{Relax}$ vs. aging time data providing the fitting parameters; maximum enthalpy recovery (${\Delta}H_{\infty}$), relaxation time (${\tau}$) and non-exponentiality parameter (${\beta}$).

순수 PMMA와 methacryl-polyhedral oligomeric silsesquioxane(Ma-POSS)를 5 wt% 첨가한 PMMA를 박막(~650 nm)과 초박막(~50 nm)으로 제조하였으며, 유리전이온도($T_g$)와 등온 물리적 시효에 미치는 박막의 두께에 미치는 POSS의 첨가 효과를 시차주사열량계(DSC)를 이용하여 조사하였다. 초박막화와 Ma-POSS의 첨가로 인해 $T_g$ 감소가 관찰되었다. 또한 등온 물리적 시효에 의한 엔탈피 완화값(${\Delta}H_{Relax}$)도 초박막화 Ma-POSS를 첨가하였을 때 감소하였다. 시효시간에 따른 ${\Delta}H_{Relax}$ 데이터에 KWW(Kohlrausch-Williams-Watts)식을 적용하여 최대 엔탈피(${\Delta}H_{\infty}$), 이완시간(${\tau}$) 그리고 이완시간의 분포상수(${\beta}$)를 결정하였으며 이를 비교 분석하였다.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. J. L. Keddie, R. A .L. Jones, and R. A. Cory, Europhys. Lett., 27, 59 (1994). https://doi.org/10.1209/0295-5075/27/1/011
  2. J. A. Forrest, K. Dalnoki-Veress, and J. R. Dutcher, Phys. Rev. E, 56, 5705 (1997). https://doi.org/10.1103/PhysRevE.56.5705
  3. J. L. Keddie and R. A. L. Jones, Israel J. Chem., 35, 21 (1995). https://doi.org/10.1002/ijch.199500005
  4. O. K. C. Tsui and H. F. Zhang, Macromolecules, 34, 9139 (2001). https://doi.org/10.1021/ma0102159
  5. S. Kawana and R. A. L. Jones, Phys. Rev. E, 63, 021501 (2001). https://doi.org/10.1103/PhysRevE.63.021501
  6. K. Dalnoki-Veress, J. A. Forrest, C. Murray, C. Gigault, and J. R. Dutcher, Phys. Rev. E, 63, 031801 (2001). https://doi.org/10.1103/PhysRevE.63.031801
  7. C. B. Roth and J. R. Dutcher, Eur. Phys. J. E, 12 (s01), 24 (2003).
  8. O. K. C. Tsui, T. P. Russell, and C. J. Hawker, Macromolecules, 34, 5535 (2001). https://doi.org/10.1021/ma000028v
  9. J. Mattsson, J. A. Forrest, and L. Börjesson, Phys. Rev. E, 62, 5187 (2000). https://doi.org/10.1103/PhysRevE.62.5187
  10. Y. P. Koh, G. B. McKenna, and S. L. Simon, J. Polym. Sci. Part B: Polym. Phys., 44, 3518 (2006). https://doi.org/10.1002/polb.21021
  11. X. Wang and W. Zhou, Macromolecules, 35, 6747 (2002). https://doi.org/10.1021/ma020291r
  12. G. Reiter, Macromolecules, 27, 3046 (1994). https://doi.org/10.1021/ma00089a023
  13. H. R. Brown and T. P. Russell, Macromolecules, 29, 798 (1996). https://doi.org/10.1021/ma951123k
  14. K. Tanaka, A. Taura, S. R. Ge, A. Takahara, and T. Kajiyama, Macromolecules, 29, 3040 (1996). https://doi.org/10.1021/ma951378y
  15. W. L. Wu, J. H. van Zanten, and W. J. Orts, Macromolecules, 28, 771 (1995). https://doi.org/10.1021/ma00107a013
  16. T. Kajiyama, K. Tanaka, and A. Takahara, Macromolecules, 30, 280 (1997). https://doi.org/10.1021/ma960582y
  17. S. Kawana and R. A. L. Jones, Eur. Phys. J. E, 10, 223 (2003). https://doi.org/10.1140/epje/i2002-10111-4
  18. R. D. Priestley, L. J. Broadbelt, J. M. Torkelson, and K. Rukao, Phys. Rev. E, 75, 061806 (2007). https://doi.org/10.1103/PhysRevE.75.061806
  19. S. L. Simon, J. Y. Park, and G. B. Mckenna, Eur. Phys. J. E, 8, 200 (2002).
  20. R. D. Priestley, C. J. Ellison, L. J. Broadbelt, and J. M. Torkelson, Science, 309, 456 (2005). https://doi.org/10.1126/science.1112217
  21. R. D. Priestley, L. J. Broadbelt, and J. M. Torkelson, Macromolecules, 38, 654 (2005). https://doi.org/10.1021/ma047994o
  22. .C. E. Struik, Physical Aging in Amorphous Polymer and Other Materials, Elsevier, Amsterdam, Chapter 1 (1978).
  23. Y. Huang and D. R. Paul, Polymer, 45, 8377 (2004). https://doi.org/10.1016/j.polymer.2004.10.019
  24. Y. Huang and D. R. Paul, Macromolecules, 38, 10148 (2005). https://doi.org/10.1021/ma051284g
  25. A. Lee and J. D. Lichtenhan, Macromolecules, 31, 4970 (1998). https://doi.org/10.1021/ma9800764
  26. H. B. Lu and S. Nutt, Macromol. Chem. Phys., 204, 1832 (2003). https://doi.org/10.1002/macp.200350046
  27. H. B. Lu and S. Nutt, Macromolecules, 36, 4010 (2003). https://doi.org/10.1021/ma034049b
  28. A. Kotal, S. Si, T. K. Paira, and T. K. Mandal, J. Polym. Sci. Part A: Polym. Chem., 46, 1111 (2008). https://doi.org/10.1002/pola.22453
  29. E. T. Kopesky, S. G. Boyes, N. Treat, R. E. Cohen, and G. H. McKinley, Rheol. Acta, 45, 971 (2006). https://doi.org/10.1007/s00397-006-0099-x
  30. A. L. Flory, T. Ramanathan, and L .C. Brinson, Macromolecules, 43, 4247 (2010). https://doi.org/10.1021/ma901670m
  31. P. Rittigstein and J. M. Torkelson, J. Polym. Sci. Part B: Polym. Phys., 44, 2935 (2006). https://doi.org/10.1002/polb.20925
  32. V. M. Boucher, D. Cangialosi, A. Alegría, and J. Colmenero, Macromolecules, 43, 7594 (2010). https://doi.org/10.1021/ma101217y
  33. V. M. Boucher, D. Cangialosi, A. Alegría, J. Colmenero, J. González-Irun, and L. M. Liz-Marzan, J. Noncryst. Solids, 357, 605 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.05.091
  34. J. E. Nam, J. K. Lee, and T. C. Mauldin, Polym. Bull., 65, 825 (2010). https://doi.org/10.1007/s00289-010-0333-7
  35. E. T. Kopesky, T. S. Haddad, R. E. Cohen, and G. H. Mckinley, Macromolecules, 37, 8992 (2004). https://doi.org/10.1021/ma048934l
  36. L. Zheng, R. J. Farris, and E. B. Coughlin, Macromolecules, 34, 8034 (2001). https://doi.org/10.1021/ma0110094
  37. E. T. Kopesky, T. S. Haddad, R. E. Cohen, and G. H. Mckinley, Polymer, 46, 4743 (2005). https://doi.org/10.1016/j.polymer.2005.04.001