DOI QR코드

DOI QR Code

Introduction of Various Amine Groups onto Poly(glycidyl methacrylate)-g-MWNTs and their Application as Biosensor Supports

폴리(글리시딜 메타크릴레이트)가 그래프트된 다중벽 탄소나노튜브에 다양한 아민 그룹의 도입과 바이오센서 지지체로서의 응용

  • Received : 2012.01.06
  • Accepted : 2012.02.20
  • Published : 2012.07.25

Abstract

A tyrosinase-immobilized biosensor was developed based on various amine-modified multi-walled carbon nanotube (MWNT) supports for the detection of phenolic compounds. MWNTs with various amine groups were prepared by radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto MWNT supports and the subsequent amination of poly(GMA) graft chains. The physical and chemical properties of the poly(GMA)-grafted MWNT supports and the aminated MWNT supports were investigated by SEM, XPS, and TGA. Furthermore, the electrochemical properties of the prepared tyrosinase-modified biosensor based on MWNT supports with amine groups were also investigated. The response of the enzymatic biosensor was in the range of 0.1-0.9 mM for the concentration of phenol in a phosphate buffer solution. Various parameters influencing biosensor performance have been optimized: binder effects, pH, temperature, and the response to various phenolic compounds. The biosensor was tested on phenolic compounds contained in two different commercial red wines.

다양한 아민 그룹으로 개질된 다중벽 탄소나노튜브(이하 MWNT) 지지체를 기반으로 하여 페놀 화합물을 검출하기 위한 티로시나아제가 고정된 바이오센서를 개발하였다. 방사선 중합법을 이용하여 MWNT에 글리시딜메타크릴레이트를 중합한 후 중합 사슬의 아미노화 반응을 통해 MWNT에 다양한 아민 그룹을 도입시켰다. 이렇게 제조된 물질의 물리적, 화학적 특성은 SEM, XPS 그리고 TGA에 의해 평가되었다. 그리고 제조된 물질을 기반으로 제작된 티로시나아제가 고정화된 바이오센서의 전기화학적 특성도 평가하였다. 본 효소 바이오센서는 0.1-0.9 mM의 페놀을 검출할 수 있다. 결합효과, pH, 온도 그리고 다양한 페놀화합물에 대한 반응과 같은 여러 가지 변수에 대하여도 최적화하였고 상용 레드와인에서의 페놀화합물 검출도 연구하였다.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. K. Saito, T. Kaga, H. Yamagishi, and S. Furusaki, J. Membrane Sci., 43, 131 (1989). https://doi.org/10.1016/S0376-7388(00)85092-9
  2. K. P. Lee, H. J. Kang, D. R. Joo, and S. H. Choi, Radiat. Phys. Chem., 60, 473 (2001). https://doi.org/10.1016/S0969-806X(00)00393-5
  3. S. H. Choi and Y. C. Nho, Korean J. Chem. Eng., 16, 725 (1999). https://doi.org/10.1007/BF02698343
  4. S. H. Choi, K. P. Lee, and Y. C. Nho, Polymer(Korea), 7, 297 (1999).
  5. S. H. Choi, K. P. Lee, and J. G. Lee, Microchem. J., 68, 205 (2001). https://doi.org/10.1016/S0026-265X(00)00154-5
  6. S. H. Choi, G. T. Kim, and Y. C. Nho, J. Appl. Polym. Sci., 71, 643 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4<643::AID-APP16>3.0.CO;2-8
  7. S. H. Choi, K. P. Lee and Y. C. Nho, J. Appl. Polym. Sci., 80, 2851 (2001). https://doi.org/10.1002/app.1402
  8. J. J. Gooding, Electrochim. Acta, 50, 3049 (2005). https://doi.org/10.1016/j.electacta.2004.08.052
  9. J. Wang, Electroanal., 17, 7 (2005). https://doi.org/10.1002/elan.200403113
  10. S. G. Wang, Q. Zhang, R. Wang, and S. F. Yoon, Biochem. Biophys. Res. Commun., 311, 572 (2003). https://doi.org/10.1016/j.bbrc.2003.10.031
  11. A. Merkoc, M. Pumera, X. Llopis, B. Perez, M. Valle, and S. Alegret, Trends Anal. Chem., 24, 826 (2005). https://doi.org/10.1016/j.trac.2005.03.019
  12. C. B. Jacobs, M. J. Peairs, and B. J. Venton, Anal. Chim. Acta, 662, 105 (2010). https://doi.org/10.1016/j.aca.2010.01.009
  13. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Prog. Polym. Sci., 35, 357 (2010). https://doi.org/10.1016/j.progpolymsci.2009.09.003
  14. D. S. Yang, D. J. Jung, and S. H. Choi, Radiat. Phys. Chem., 79, 434 (2010). https://doi.org/10.1016/j.radphyschem.2009.11.006
  15. K. I. Kim, J. C. Lee, K. Robards, and S. H. Choi, J. Nanosci. Nanotechnol., 10, 3790 (2010). https://doi.org/10.1166/jnn.2010.1982
  16. Y. H. Yun, Z. Dong, V. Shanov, W. R. Heineman, H. B. Halsall, A. Bhattacharya, L. Conforti, R. K. Narayan, W. S. Ball, and M. J. Schulz, Nano Today, 2, 30 (2007).
  17. F. R. R. Teles and L. P. Fonseca, Mat. Sci. Eng. C-Mater., 28, 1530 (2008). https://doi.org/10.1016/j.msec.2008.04.010
  18. S. Akgol, Y. Kaçar, A. Denizli, and M. Arca, Food Chem., 74, 281 (2001). https://doi.org/10.1016/S0308-8146(01)00150-9
  19. J. H. Yang, J. C. Lee, and S. H. Choi, J. Sensors, DOI: 10.1155/2009/916515.
  20. L. Campanella, A. Bonanni, E. Finotti, and M. Tomassetti, Biosens. Bioelectron., 19, 641 (2004). https://doi.org/10.1016/S0956-5663(03)00276-8
  21. A. Luximon-Ramma, T. Bahorun, A. Crozier, V. Zbarsky, K. P. Datla, and D. T. Dexter, Food Res. Int., 38, 357 (2005). https://doi.org/10.1016/j.foodres.2004.10.005
  22. D. J. Chung, M. K. Seong, and S. H. Choi, J. Appl. Polym. Sci., 122, 1785 (2011). https://doi.org/10.1002/app.34225
  23. K. I. Kim, H. Y. Kang, J. C. Lee, and S. H. Choi, Sensors, 9, 6701 (2009). https://doi.org/10.3390/s90906701
  24. B. Serra, S. Jimenez, M. L. Mena, A. J. Reviejo, and J. M. Pingarron, Biosens. Bioelectron., 17, 217 (2002). https://doi.org/10.1016/S0956-5663(01)00269-X
  25. Y. C. Tsai and C. C. Chiu, Sensor. Actuat. B-Chem., 125, 10 (2007). https://doi.org/10.1016/j.snb.2007.01.032
  26. J. C. Espin, R. Varon, L. G. Fenoll, M. A. Gilabert, P. A. Garcia- Ruiz, J. Tudele, and F. Canovas, Eur. J. Biochem., 267, 1270 (2000). https://doi.org/10.1046/j.1432-1327.2000.01013.x