참고문헌
- R. M. Ali, V. Ravichandran and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math., Sci., 15(2004), 87-94.
- M. K. Aouf , T. Bulboaca and A. O. Mostafa, Subordination properties of subclasses of p-valent functions involving certain operators, Publ. Math. Debrecen, 73(2008), 401-416.
- T. Bulboaca, A class of superordination-preserving integral operators, Indag. Math. (N. S.)., 13(2002), 301-311. https://doi.org/10.1016/S0019-3577(02)80013-1
- T. Bulboaca, Classes of first order differential superordinations, Demonstratio Math., 35(2002), 287-292.
- T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
- J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276(2002), 432-445. https://doi.org/10.1016/S0022-247X(02)00500-0
- V. Kumar and S. L. Shakla, Multivalent functions defined by Ruscheweyh derivatives, I, Indian J. Pure Appl. Math., 15(1984), 1216-1227
- V. Kumar and S. L. Shakla, Multivalent functions defined by Ruscheweyh derivatives, II, Indian J. Pure Appl. Math., 15(1984), 1228-1238.
- J. L. Liu, Subordinations for certain multivalent analytic functions associated with the generalized Srivastava-Attiya operator, Integral Transforms Spec. Funct., 18(2007), 207-216. https://doi.org/10.1080/10652460701208577
- S. S. Miller and P. T. Mocanu, Differential Subordination : Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
- S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28(1981), 157-171. https://doi.org/10.1307/mmj/1029002507
- S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Complex Variables, 48(2003), 815-826. https://doi.org/10.1080/02781070310001599322
- J. Patel and P. Sahoo, Som applications of dierential subordination to certain oneparameter families of integral operators, Indian J. Pure Appl. Math., 35(2004), 1167-1177.
- J. K. Prajapat and S. P. Goyal, Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal., 3(2009), 129-137.
- D. Raducanu and H. M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct., 18(2007), 933-943. https://doi.org/10.1080/10652460701542074
- G. S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1(Bucharest, 1981), Lecture Notes in Math. (Springer-Verlag), 1013, 362-372.
- S. Shams, S. R. Kulkarni and Jay M. Jahangiri, Subordination properties of p-valent functions defined by integral operators, Internat. J. Math. Math. Sci., (2006), Art. ID 94572, 1-3.
- T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differantial sandwich theorems for some subclasses of analytic functions, J. Austr. Math. Anal. Appl., 3(2006), Art. 8, 1-11.
- H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms Spec. Funct., 18(2007), 207-216. https://doi.org/10.1080/10652460701208577
- H. M. Srivastava and J. Choi, Series associated with the Zeta and related functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.
- N. Tuneski, On certain sufficient conditions for starlikeness, Internat. J. Math. Math. Sci., 23(2000), 521-527. https://doi.org/10.1155/S0161171200003574
- Z. G. Wang, Q. G. Li and Y. P. Jiang, Certain subclasses of multivalent analytic functions involving the generalized Srivastava-Attiya operator, Integral Transforms Spec. Funct., 21(2010), 221-234. https://doi.org/10.1080/10652460903098248