참고문헌
- M. Audin, The Topology of Torus Actions on Symplectic Manifolds, Progress in Mathematics, Vol 93, Birkhauser Verlag, Basel, 1991.
- K. Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307-1338. https://doi.org/10.4007/annals.2009.170.1307
- K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45-88. https://doi.org/10.1007/s002220050136
- A. Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), no. 2, 289-305. https://doi.org/10.1006/aima.1997.1627
- A. Bertram, I. Ciocan-Fontanine, and B. Kim Gromov-Witten invariants for abelian and nonabelian quotients, J. Algebraic Geom. 17 (2008), no. 2, 275-294. https://doi.org/10.1090/S1056-3911-07-00456-0
- D. Cheong, in preparation.
- W.-E. Chuang, D. E. Diaconescu, and G. Pan, Chamber structure and wallcrossing in the ADHM theory of curves II, arXiv:0908.1119.
- W.-E. Chuang, D. E. Diaconescu, and G. Pan, Rank two ADHM invariants and wallcrossing, arXiv:1002.0579.
- I. Ciocan-Fontanine and B. Kim, Moduli stacks of stable toric quasimaps, Adv. Math. 225 (2010), no. 6, 3022-3051. https://doi.org/10.1016/j.aim.2010.05.023
- I. Ciocan-Fontanine and B. Kim, in preparation.
- I. Ciocan-Fontanine, B. Kim, and D. Maulik, Stable quasimaps to GIT quotients, in preparation.
- D. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), no. 1, 17-50.
- D.-E. Diaconescu, Chamber structure and wallcrossing in the ADHM theory of curves I, arXive:0904.4451.
- I. Dolgachev, Lectures on Invariant Theory, London Mathematical Society Lecture Note Series, 296. Cambridge University Press, Cambridge, 2003.
- V. Ginzburg, Lectures on Nakajima's quiver varieties, arXiv:0905.0686.
- A. Givental, A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996), 141-175, Progr.Math., 160, Birkhauser Boston, Boston, MA, 1998.
- D. Joyce and Y. Song, A theory of generalized Donaldson-Thomas invariants, to appear in Memoirs of the AMS, arXiv:0810.5645.
- B. Kim, Stable quasimaps to holomorphic symplectic quotients, arXiv:1005.4125.
- B. Kim and H. Lee, Wall-crossings for twisted quiver bundles, arXiv:1101.4156.
- A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515-530. https://doi.org/10.1093/qmath/45.4.515
- M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435.
- A. Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), no. 3, 495-536. https://doi.org/10.1007/s002220050351
- G. Laumon and L. Moret-Bailly, Champs algebriques, A Series of Modern Surveys in Mathematics, 39. Springer-Verlag, Berlin, 2000.
- J. Lepotier, Lectures on Vector Bundles, Translated by A. Maciocia. Cambridge Studies in Advanced Mathematics, 54. Cambridge University Press, Cambridge, 1997.
- J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119-174. https://doi.org/10.1090/S0894-0347-98-00250-1
- A. Marian, D. Oprea, and R. Pandharipande, The moduli space of stable quotients, arXiv:0904.2992.
- A. Mustata and A. Mustata, Intermediate moduli spaces of stable maps, Invent. Math. 167 (2007), no. 1, 47-90.
-
A. Mustata and A. Mustata, The Chow ring of
${\bar{M}}_{0,m}$ (${\mathbb{P}}^n$ , d), J. Reine Angew. Math. 615 (2008), 93-119. - C. Okonek, M. Schneider, and H. Spindler, Vector Bundles on Complex Projective Spaces, Progress in Mathematics, Vol 3, Birkhauser, Boston, Mass., 1980.
- C. Okonek and A. Teleman, Comparing virtual fundamental classes: gauge theoretical Gromov-Witten invariants for toric varieties, Asian J. Math. 7 (2003), no. 2, 167-198. https://doi.org/10.4310/AJM.2003.v7.n2.a2
- R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407-447. https://doi.org/10.1007/s00222-009-0203-9
- B. Szendroi, Non-commutative Donaldson-Thomas invariants and the conifold, Geom. Topol. 12 (2008), no. 2, 1171-1202. https://doi.org/10.2140/gt.2008.12.1171
- R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations, J. Differential Geom. 54 (2000), no. 2, 367-438. https://doi.org/10.4310/jdg/1214341649
- Y. Toda, Moduli spaces of stable quotients and the wall-crossing phenomena, arXiv:1005.3743.
피인용 문헌
- A mathematical theory of the gauged linear sigma model vol.22, pp.1, 2017, https://doi.org/10.2140/gt.2018.22.235