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STABLE QUASIMAPS

Bumsig Kim

Abstract. The moduli spaces of stable quasimaps unify various moduli
appearing in the study of Gromov-Witten theory. This note is a survey
article on the moduli of stable quasimaps, based on papers [9, 11, 18]
as well as the author’s talk at Kinosaki Algebraic Geometry Symposium
2010.

1. Introduction

Amorphism from a varietyX to a projective space Pn is described by a linear
system on X , which can also be regarded as a C×-bundle P on X with a section
u of P ×C× An+1 without base points. When X is a curve, one may compactify
the morphism space Mor(X,Pn) by creating new rational components whenever
base points try to appear. This method eventually provides Kontsevich’s stable
map compactification. There is another compactification, Quot scheme of rank
1 subsheaves of O⊕n+1

X . The latter’s boundary elements allow base points
instead of attaching new rational components to X . It turns out that this
same idea can be applied to any GIT quotient W//G when a complex reductive
Lie group G linearly acts on an affine variety W with no strictly semistable
points (The precise definition and the condition for GIT quotients considered
in this paper will be handled in §2).

The above point of view leads us to the followings.

(1) The notion of a quasimap (P, u), i.e., a pair of a principal G-bundle P
on a prestable curve and a section u of P ×G W with at worst finitely
many base points. The stability of quasimaps will be introduced in
§3.1.

(2) New compactifications of moduli of maps from curves to a GIT quo-
tient W//G. These include intermediate moduli spaces with moduli of
stable maps and moduli of stable quasimaps as the extremal ones on
the parameter space of stabilities (see [27, 28, 34] for Pn and Grass-
mannians; the investigation of the general case appeared in [11]). In
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certain cases, the new spaces are easier to deal with than the stable
map spaces. We will present the stable quasimap compactification in
§3.

(3) The virtual smoothness of the Artin stack of the quasimap pairs when
W is LCI and W//G is smooth. The virtual smoothness will be briefly
treated in §3.4.

(4) A new class of examples with symmetric obstruction theory if W//G is
a Nakajima quiver variety (see [13, 18]). This will be the topic of §4.

(5) The wall-crossing interpretation of Givental’s approach to the Classical
Mirror Conjecture (see [10]).

2. Three quotients

Let W be an affine variety over C with a linear action by a complex reductive
Lie group G. Typical examples of G are products of general linear groups
GLn(C). In this situation one sometimes wants to define a quotient space.
There are three approaches.

2.1. Affine quotients

Since W is affine, it can be considered as Spec of the ring C[W ] of all
regular functions on W . Hence, it is natural to define the quotient by Spec of
the ring C[W ]G of all G-invariant regular functions on W . It is known that the
projection W → SpecC[W ]G is a good quotient of W by the action of G (see
[24, Theorem 6.3.1]).

In many cases, this is not interesting. For instance, if the homothety ac-
tion is included in the G-action, the closure of every G-orbit contains the ori-
gin. Therefore every G-invariant function must be constant on W . Thus,
SpecC[W ]G = SpecC.

2.2. GIT quotients

The main reference for this subsection is King’s paper [20, §2]. In the pre-
vious example, to obtain an interesting space as a quotient, we need to remove
the origin. To do so geometrically, we should also prevent other orbits from
approaching the origin or some point. For this, we will regard W as Proj of the
graded ring C[W × A1] whose grading comes from degrees with respect to the
extra A1. Given a character χ of G (i.e., a one-dimensional representation χ of
G), we define a G-action on W × A1

χ−1 , where A1
α for character α denotes the

one-dimensional representation space of G associated to α. Now it is natural
to take Proj of the graded ring C[W × A1]G of all G-invariant functions. This
quotient is denoted by W//χG.

To describe the quotient space geometrically, let us recall the following no-
tions (see [20, Lemma 2.4]). We call a point p in W :

• χ-stable if, for every one-parameter subgroup C× of G, C× · (p, 1) is
closed in W × A1;
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• χ-unstable if there is a one-parameter subgroup C× of G such that the
closure of C× · (p, 1) meets W × {0};

• χ-semistable if it is not χ-unstable.

Let W ss be the χ-semistable locus of W by the action of G. If f(x) ∈ C[W ]
and f(x)zl ∈ C[W × A1]G with l > 0, then via the projection W ss → W//χG
the inverse image of the open locus f(x)zl 6= 0 in W//χG is Spec(C[W ]f )

G.
This shows that W//χG is a good quotient of W ss.

For a suitable choice of χ, it might be possible that there are no strictly
semistable points. In such a case, the GIT quotient is known to be also a
geometric quotient so that W//χG = W s/G where W s is the stable locus, i.e.,
the locus of all χ-stable points (see [20, §2]).

2.3. Stack quotients

The stack quotient [W/G], which is as a set (over SpecC) the set W/G of
G-orbits, keeps the data of isotropy subgroups (see [23]). The stack quotient
is defined as a category of groupoids over the category Sch of schemes over
C, whose objects over a scheme S are pairs (P, u) of principal G-bundles and
G-equivariant morphism u from P to W . The morphism u can be considered
also as a section of P ×G W .

2.4. Relationships

Assume from now on that there are no strictly χ-semistable points and G
acts on the stable locus freely. The latter condition is only technical (see [6]).

With this assumption the three quotients are related by the diagram

[W/G] oo open
?
_

W//χG
projective

// SpecC[W ]G

(Note that W//χ=0G coincides with the affine quotient SpecC[W ]G, but we will
not use this notation).

2.5. Examples

There are many examples.

Example 2.5.1. Let Y be a projective variety in Pn and let C(Y ) denote the
affine cone of Y in An+1. Then Y is the GIT quotient C(Y )//detC

×, where the
character is defined by the determinant map det. Typical examples for this
case will be smooth complete intersections Y .

Example 2.5.2. The smooth toric varieties can be considered as a GIT quo-
tient Y = CN//χG (see [1, 12, 14]). Since G = Hom(An−1(Y ),C×), we may
regard an element in An−1(X) as a character. Then any very ample line bundle
can be the character χ.
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The partial flag varieties of nested subspaces of dimension k1, . . . , kr in
Cn=kr+1 can be considered as a GIT quotient

r
∏

i=1

Hom(Cki ,Cki+1)//χ

r
∏

i=1

GLki
(C)

with χ being the product of determinant characters of each components (for
instance, see [5]). Hence, complete intersections Y in smooth toric varieties or
partial flag varieites are also such GIT examples.

Example 2.5.3. Quiver varieties are such GIT examples (for instance, see
[15]). In particular, quiver varieties of Nakajima type, being noncompact, will
be recalled in Section 4.

3. Quasimaps

A morphism from X to the GIT quotient W s/G amounts to a pair (P, u)
where P is a principal G-bundle on X and u is a G-equivariant map from P to
W whose image is contained in W s. By Luna’s slice theorem, W s is a principal
G-bundle on W s/G in étale topology. The direction ⇒ therefore follows. The
other direction holds since P → X is a categorical quotient. Here we exchange
left and right actions via the inverse map G → G, g 7→ g−1.

3.1. Stable quasimaps

If we allow that u hits the unstable locus Wun, the pair (P, u) is not any
more a well-defined map to the GIT quotient, but it is a map [u] to the stack
quotient by the very definition of the stack quotient.

Definition 3.1.1. The pair (P, u) is called a quasimap of genus g if:

• X is a projective, smooth or nodal curve of genus g, with n ordered
smooth distinct markings;

• the base locus u−1(P ×G Wun) consists of finite points.

The quasimap is called a stable quasimap if:

• ωX ⊗ (P ×G A1
χ)

ǫ is ample for all positive rational number ǫ;
• the base points (if any) are smooth and non-marked points.

3.2. Degrees

Note that there is a notion of degree for a map f from curve X to W//G by
the homomorphism

deg(f) : Pic(W//χG) → Z

M 7→ deg(f∗M)
.

Similarly we define the degree of (P, u) as a homomorphism from the char-
acter group of G to Z by sending α 7→ deg(P ×G A1

α). Let β be a group
homomorphism from the character group of G to Z.
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Theorem 3.2.1 ([9, 11]). The moduli stack Qg,n(W//χG, β) of stable quasi-

maps of n-pointed, genus g, degree β to W//χG is a finite-type DM stack proper

over the affine quotient SpecC[W ]G. Furthermore if the affine scheme W s is

smooth and W is a locally complete intersection scheme, then the moduli stack

comes with a natural perfect obstruction theory.

The map from the moduli stack to the affine quotient can be naturally given
since P → X is categorical at the diagram

P //

�� %%J
J

J

J

J

J

J

J

J

J

W

��

X // SpecC[W ]G

and X is a projective scheme over C.

3.3. Completeness

Let ∆ be a unit disk in complex line A1 and let ∆◦ = ∆\ {0}. Fix a smooth
curveX and consider ∆◦-family (P, u) of stable quasimaps on X×∆◦. Suppose
that G = GLr(C) so that we may have the corresponding locally free sheaf E
associated to the P ×GLr(C) C

r. In this situration, we indicate how to find

an extension of (P, u). First we take a coherent sheaf extension E of E using
the properness of Quot schemes (after showing the boundedness). The double

dual E∨∨
is reflexive on the smooth complex surface C × ∆ being regular in

codimension 3 (see [29, Lemma 1.1.10]), hence it is a locally free sheaf on the
surface. Let P be the associated principal G-bundle on X ×∆. Now we may
consider u as a rational map C ×∆ //___ P ×G W . The indeterminant locus

of u is a locus of finite points. However by Hartogs’ theorem we conclude that
the locus is empty.

3.4. Perfect obstruction theory

It is not difficult to see that the deformations of curves X and principal
bundles P on X are unobstructed. Let us fix X , P and deform only section
u of P ×G W . Note that the deformation space def(u) is H0(X,u∗Tρ) where
Tρ is the relative tangent complex of the natural projection ρ : P ×G W → X .
We can then show that ob(u) := H1(X,u∗Tρ) is an obstruction space. The
relative virtual dimension is dimdef(u)− dimob(u), which is locally constant.
Roughly speaking, this implies that the moduli space is virtually smooth in the
following sense. There is a vector bundle stack [F/E] of a two term perfect
complex E → F whose kernel is the deformation sheaf and whose cokernel is the
obstruction sheaf and there is a closed embedding of an intrinsic normal cone
CQ of the moduli stack Q = Qg,n(W//G, β) so that the refined intersection
0!F/E(CQ) of CQ with the zero section is defined to be the so-called virtual

fundamental class [Qg,n(W//G, β)]vir ∈ Aexp.dim(Qg,n(W//G, β),Q) where the
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expected dimension exp.dim is the relative virtual dimension plus the dimension
of the Mg,n-relative stack BunG of principal G-bundles on the universal curve
of the stack Mg,n of n-pointed genus g prestable curves (see [3, 22, 25]).

3.5. Historical remarks

These are limited remarks.

3.5.1. For a projective smooth toric variety, the spaces of stable quasimaps
with the fixed domain curve P1 also become projective smooth toric varieties.
The spaces are used to prove the Mirror Theorem for Fano/CY complete in-
tersections by Givental in [16].

3.5.2. Let W//χG = Hom(Cr,Cn)//detGLr(C) = Grass(r, n). In this case,

a stable quasimap amounts to a rank n − r quotient of O⊕n
X on a prestable

curve with certain conditions: for example when there are no markings, the
conditions are no torsion at nodes and no rational tails. The latter is called a
stable quotient and introduced by Marian, Oprea, and Pandharipande in [26].

For a fixed smooth curveX , the moduli spaces of stable quotients are nothing
but Quot schemes of rank n − r quotients of O⊕n

X . Quot schemes have been
used and studied in Gromov-Witten theory (for instance, see [4, 30]).

3.5.3. For a smooth projective toric variety CN//(C×)r, the theorem is proven
in [9]. The paper [9] shows the idea that all the above constructions can be
unified and generalized to any GIT quotient W//G considered in Section 2.

3.6. Quasimap invariants

Using the perfect obstruction theory on the moduli space of stable quasi-
maps, we define the virtual fundamental class of the moduli space. Hence, we
can define intersection numbers by integrals of tautological cohomology classes
against the virtual fundamental class.

We conjecture that these invariants and Gromov-Witten invariants for W//G
carry the same amount of information (see [9, 11, 10]). A precise formulation
of the conjecture is unknown except for the following two cases.

(1) When W//G has the property that for every curve C in W//G, C ·
KW//G ≤ −2, we expect that both invariants exactly coincide.

(2) The genus zero quasimap invariants should lie on the Lagrangian cone
generated by the genus zero gravitational Gromov-Witten invariants
(and vice-versa).

3.7. Some evidence

3.7.1. For fixed X = P1 and any toric complete intersection W//G, (2) is the
Mirror Theorem in [16]. For Grassmannian case, (1) is a theorem in [26].

3.7.2. In [10] we prove (2) for any Fano/CY toric complete intersection in a
toric variety.
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4. Stable quasimaps to holomorphic symplectic quotients

Let V be a smooth affine variety with a holomorphic symplectic form ω.
The form ω ∈ Γ(V, TV ) is a nondegenerate closed (2,0)-form. In this setup one
can define a quotient which is also holomorphic symplectic.

4.1. Holomorphic symplectic quotients

Suppose that the G-action V is Hamiltonian which means that: the G-action
preserves ω and there is a G-equivariant morphism µ : V → g∗ such that

(⋆) 〈dµ(ξ), g〉 = ω(ξ, dα(g)), ξ ∈ TV .

Here α : G → AutV is the map induced from the action and g denotes the Lie
algebra of G. The morphism µ is called a complex moment map.

We define the holomorphic symplectic quotient by µ−1(λ)//χG where λ is a
G-invariant regular value of µ. The quotient is denoted by V///λ,χG.

4.2. Self-duality

Let F denote the G-equivariant complex

[g⊗OV
dα→ TV

dµ→ g∗ ⊗OV ]|
µ−1(λ)

.

Note that by (⋆) the self-duality F ∼= F∨ holds. Note also that F is a monad
such that Kerdµ/Imdα in (µ−1(λ))s is isomorphic to the pullback of the tangent
sheaf of holomorphic symplectic quotient. In other words, the quotient F/G is
a generalized Euler sequence for the tangent sheaf of V///G.

4.3. Symmetric obstruction theory

Let us fix a smooth projective curve X . We define Mβ to be the stack of
degree β stable quasimaps to the holomorphic symplectic quotient µ−1(λ)//G
from X . This moduli space has a symmetric obstruction theory if X is an ellip-
tic curve, i.e., the deformation space H0(X,P ×G F) is functorially isomorphic
to the dual of the obstruction space H1(X,P ×G F). This follows from the
Serre duality and the self-duality F ∼= F∨.

By twisting, this symmetry can be made hold for arbitrary genus, smooth
projective curve X when the quotient is a Nakajima quiver variety.

4.4. Nakajima’s quiver varieties

A quiver Q is an oriented graph, i.e., data (Q0, Q1, h, t) where Q0 is the set
of vertices, Q1 is the set of arrows, h is the head map, and t is the tail map
(h, t : Q1 → Q0). Let Q be the quiver obtained from Q by adding the opposite
arrow ā for each arrow a in Q1 (so |Q1| = 2|Q1|). Set ¯̄a = a.

Fix a distinguished vertex 0 ∈ Q0 and a dimension vector v ∈ NQ0 . Let V
be the direct sum of Hom(Cvta ,Cvha) for all a ∈ Q1. V has a decomposition
V+⊕V− based on the arrows in Q1 and Q1 \Q1 so that it is a symplectic vector
space with the canonical symplectic form. Also V comes with a natural action
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of G = Πi∈Q0,i6=0GLvi(C). It is easy to see that this action is Hamiltonian with
a moment map





∑

a∈Q1:ha=i

(−1)|a|φa ◦ φā





i∈Q0,i6=0

.

Choose (θi) ∈ ZQ0\{0} and define θ : G → C× by g 7→
∏

det gθii . Now we can
define V///λ,θG. Let λ = 0 from now on.

Note that a quasimap data is equivalent to (Ei, φa) where Ei is a vector
bundle P ×G Avi and φa : Eta → Eha is a homomorphism obtained from u,
satisfying the moment map relation and the condition that ‘base points’ are
finite. This therefore motivates the following.

4.5. Twisted quiver sheaves

Fix a smooth projective curve X , a line bundle Ma on X for every a ∈ Q1,
and an isomorphism Ma ⊗Mā → K−1

X for every a ∈ Q1.

Definition 4.5.1. (Ei, φa) is called a framed-twisted quiver sheaf on X with

the moment map relation if:

(1) Ei is a coherent sheaf on X ;
(2) φa : Ma ⊗ Eta → Eha is an OX -homomorphism;
(3)

∑

i6=0

∑

tā=i(−1)|a|φa ◦ (IdMa
⊗ φā) = 0 in

⊕

i6=0 End(K
−1
X ⊗ Ei, Ei);

(4) E0 = O⊕r
X for some integer r.

Often, we will call it simply twisted quiver sheaf, even just quiver sheaf.

4.6. Stability conditions

Let A be the abelian category of twisted quiver sheaves with respect to the
fixed data above. Let Z : K(A) → C be a homomorphism defined by

(Ei, φa) 7→
∑

i6=0

rkEi +
√
−1(

∑

i6=0

degEi + τrkE0),

where τ is a positive real number. Note that Z(K(A)\ {0}) is contained in the
union of the half plane where the real part is positive with the positive y-axis.
This is a Bridgeland stability function with Harder-Narasimhan property.

A nonzero twisted quiver sheaf (Ei, φa) is called τ -(semi)stable if ArgZ(E′) <
(≤)ArgZ(E) for every nonzero proper subobject E′ of E in A.

Proposition 4.6.1 ([18]). Fix a dimension vector v with v0 = 1 and a degree

vector d. Then there is a positive number τ0 such that for every τ ≥ τ0 and for

every (Ei, φa) twisted quiver sheaf with (v, d), the following are equivalent:

(1) τ-semistability.

(2) τ-stability.
(3) Stability as a twisted quasimap to V///G with θ = (1, . . . , 1).
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Here the stability as a twisted quasimap (P, u) is defined to be similar to the
untwisted case (for the detail see [18]): After fixing a local trivialization of Ma

and ωX , we may say whether a point X lands via u on the θ-unstable locus of
W or not. The stability is by definition the requirement that the generic point
of X lands on the stable locus W s = W ss. This condition is independent of
the choices of local trivializations.

Fix (v, d) with v0 = 1. For τ to be a wall (i.e., there are strictly τ -semistable
objects with type (v, d)), τ must satisfy a numerical condition that the τ -slope
of (v, d) equals to the τ -slope of some (v′, d′) 6= (v, d) with v′i ≤ vi. This
condition ensures that the walls for a given (v, d) are discrete, which together
with the above proposition shows that there are only finitely many walls τi,
i = 1, . . . , N .

Theorem 4.6.2 ([18]). The moduli stack Mτ
(v,d) of τ-stable quiver sheaves

of the rank-degree vector (v, d) is a finite type algebraic space equipped with a

symmetric obstruction theory. The stack is proper over Specµ−1(0)G if τ is

large enough.

4.7. Remarks

When Q is the ADHM quiver, the above proposition and theorem were
proven in [13] which is one of the main sources of inspiration for the general
case.

So far, there are two classes of moduli examples equipped with symmetric
obstruction theory: moduli of stable objects in the abelian category of coherent
sheaves of a CY 3-fold and representations of a quiver with relations from a
superpotential on Q (see [33, 31, 32, 17, 21]).

One can study wall-crossings of topological Euler characteristics of Mτ
(v,d)

weighted by Behrend’s constructible functions (see [2]) using Joyce-Song for-
mula (see [17]) or Kontsevich-Soibelman formula (see [21]). Once again for the
ADHM case, it is done in [13, 7, 8]; and its generalization is carried out in [19].

For the use of Joyce-Song theory, in [19] we prove:

• χ(E,F ) := ext0A(E,F )− ext1A(E,F ) + ext1A(F,E) − ext0A(F,E) is nu-
merical in when E,F ∈ A are locally free quiver sheaves with rkE0 +
rkF0 ≤ 1;

• Mτ
(v,d) is analytic-locally a critical locus of a holomorphic function on

a smooth analytic domain.

It would be interesting to relate A with a CY 3-category.
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