References
- B. D. Beach, H. C. Williams, and C. R. Zarnke, Some computer results on units in quadratic and cubic fields, Proceedings of the Twenty-Fifth Summer Meeting of the Canadian Mathematical Congress (Lakehead Univ., Thunder Bay, Ont., 1971), pp. 609-648, Lake-head Univ., Thunder Bay, Ont., 1971.
- R. Hashimoto, Ankeny-Artin-Chowla conjecture and continued fraction, J. Number Theory 90 (2001), no. 1, 143-153. https://doi.org/10.1006/jnth.2001.2652
- J. Mc Laughlin, Multi-variable polynomial solutions to Pell's equation and fundamental units in real quadratic fields, Pacific J. Math. 210 (2003), no. 2, 335-349. https://doi.org/10.2140/pjm.2003.210.335
- R. A. Mollin, Quadratics, CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL, 1996.
- R. A. Mollin and P. G. Walsh, A note on powerful numbers, quadratic fields and the Pellian, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), no. 2, 109-114.
- A. J. Van Der Poorten, H. J. J. te Riele, and H. C. Williams, Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000, Math. Comp. 70 (2001), no. 235, 1311-1328.
- A. J. Van Der Poorten, H. J. J. te Riele, and H. C. Williams, Corrigenda and addition to \Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000", Math. Comp. 72 (2003), no. 241, 521-523.
- K. Tomita, Explicit representation of fundamental units of some real quadratic fields. II, J. Number Theory 63 (1997), no. 2, 275-285. https://doi.org/10.1006/jnth.1997.2088
Cited by
- ON CONTINUED FRACTIONS, FUNDAMENTAL UNITS AND CLASS NUMBERS OF REAL QUADRATIC FUNCTION FIELDS vol.27, pp.2, 2014, https://doi.org/10.14403/jcms.2014.27.2.183
- REAL QUADRATIC FUNCTION FIELDS OF MINIMAL TYPE vol.28, pp.4, 2013, https://doi.org/10.4134/CKMS.2013.28.4.735
- Fundamental units and consecutive squarefull numbers vol.13, pp.01, 2017, https://doi.org/10.1142/S1793042117500142