DOI QR코드

DOI QR Code

A NOTE ON UNITS OF REAL QUADRATIC FIELDS

  • Byeon, Dong-Ho (Department of Mathematics Seoul National University) ;
  • Lee, Sang-Yoon (Department of Mathematics Seoul National University)
  • Received : 2011.04.05
  • Published : 2012.07.31

Abstract

For a positive square-free integer $d$, let $t_d$ and $u_d$ be positive integers such that ${\epsilon}_d=\frac{t_d+u_d{\sqrt{d}}}{\sigma}$ is the fundamental unit of the real quadratic field $\mathbb{Q}(\sqrt{d})$, where ${\sigma}=2$ if $d{\equiv}1$ (mod 4) and ${\sigma}=1$ otherwise For a given positive integer $l$ and a palindromic sequence of positive integers $a_1$, ${\ldots}$, $a_{l-1}$, we define the set $S(l;a_1,{\ldots},a_{l-1})$ := {$d{\in}\mathbb{Z}|d$ > 0, $\sqrt{d}=[a_0,\overline{a_1,{\ldots},2a_0}]$}. We prove that $u_d$ < $d$ for all square-free integer $d{\in}S(l;a_1,{\ldots},a_{l-1})$ with one possible exception and apply it to Ankeny-Artin-Chowla conjecture and Mordell conjecture.

Keywords

References

  1. B. D. Beach, H. C. Williams, and C. R. Zarnke, Some computer results on units in quadratic and cubic fields, Proceedings of the Twenty-Fifth Summer Meeting of the Canadian Mathematical Congress (Lakehead Univ., Thunder Bay, Ont., 1971), pp. 609-648, Lake-head Univ., Thunder Bay, Ont., 1971.
  2. R. Hashimoto, Ankeny-Artin-Chowla conjecture and continued fraction, J. Number Theory 90 (2001), no. 1, 143-153. https://doi.org/10.1006/jnth.2001.2652
  3. J. Mc Laughlin, Multi-variable polynomial solutions to Pell's equation and fundamental units in real quadratic fields, Pacific J. Math. 210 (2003), no. 2, 335-349. https://doi.org/10.2140/pjm.2003.210.335
  4. R. A. Mollin, Quadratics, CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL, 1996.
  5. R. A. Mollin and P. G. Walsh, A note on powerful numbers, quadratic fields and the Pellian, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), no. 2, 109-114.
  6. A. J. Van Der Poorten, H. J. J. te Riele, and H. C. Williams, Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000, Math. Comp. 70 (2001), no. 235, 1311-1328.
  7. A. J. Van Der Poorten, H. J. J. te Riele, and H. C. Williams, Corrigenda and addition to \Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000", Math. Comp. 72 (2003), no. 241, 521-523.
  8. K. Tomita, Explicit representation of fundamental units of some real quadratic fields. II, J. Number Theory 63 (1997), no. 2, 275-285. https://doi.org/10.1006/jnth.1997.2088

Cited by

  1. ON CONTINUED FRACTIONS, FUNDAMENTAL UNITS AND CLASS NUMBERS OF REAL QUADRATIC FUNCTION FIELDS vol.27, pp.2, 2014, https://doi.org/10.14403/jcms.2014.27.2.183
  2. REAL QUADRATIC FUNCTION FIELDS OF MINIMAL TYPE vol.28, pp.4, 2013, https://doi.org/10.4134/CKMS.2013.28.4.735
  3. Fundamental units and consecutive squarefull numbers vol.13, pp.01, 2017, https://doi.org/10.1142/S1793042117500142