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A NOTE ON UNITS OF REAL QUADRATIC FIELDS

Dongho Byeon and Sangyoon Lee

Abstract. For a positive square-free integer d, let td and ud be positive

integers such that ϵd = td+ud

√
d

σ
is the fundamental unit of the real qua-

dratic field Q(
√
d), where σ = 2 if d ≡ 1 (mod 4) and σ = 1 otherwise.

For a given positive integer l and a palindromic sequence of positive in-
tegers a1, . . ., al−1, we define the set S(l; a1, . . . , al−1) := {d ∈ Z | d >

0,
√
d = [a0, a1, . . . , al−1, 2a0]}. We prove that ud < d for all square-free

integer d ∈ S(l; a1, . . . , al−1) with one possible exception and apply it to
Ankeny-Artin-Chowla conjecture and Mordell conjecture.

1. Introduction

For a positive square-free integer d, let td and ud be positive integers such
that

ϵd =
td + ud

√
d

σ
> 1

is the fundamental unit of the real quadratic field Q(
√
d), where σ = 2 if d ≡ 1

(mod 4) and σ = 1 otherwise. The following two conjectures are well known.

Ankeny-Artin-Chowla conjecture. For any prime p congruent to 1 modulo
4, up ̸≡ 0 (mod p).

Mordell conjecture. For any prime p congruent to 3 modulo 4, up ̸≡ 0
(mod p).

It is checked that Ankeny-Artin-Chowla conjecture is true for all primes
p < 2 × 1011 in [6], [7] and Mordell conjecture is true for all primes p < 107

in [1]. In relation to three consecutive powerful numbers, Mollin and Walsh [5]
conjectured that ud ̸≡ 0 (mod d) when d ≡ 7 (mod 8). But these conjectures
are still open.
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Let d be a non-square positive integer congruent to 1 modulo 4. We denote
the continued fraction expansion of (1 +

√
d)/2 by

1 +
√
d

2
= [a′0, a

′
1, . . .] = [a′0, a

′
1, . . . , a

′
l′d
],

where l′d is the length of the period of the continued fraction expansion. Then
a′l′d

= 2a′0−1 and the sequence of positive integers a′1, . . . , a
′
l′d−1 is palindromic,

that is, a′l′d−t = a′t for 1 ≤ t ≤ l′d − 1. If p is a prime congruent to 1 modulo

4, then l′p is odd. For a given positive integer l′ and a palindromic sequence of
positive integers a′1, . . ., a

′
l′−1, Hashimoto [2] defined the set S′(l′; a′1, . . . , a

′
l′−1)

by

S′(l′; a′1, . . . , a
′
l′−1)

:= {d ∈ Z | d > 0, d ≡ 1 (mod 4) and
1 +

√
d

2
= [a′0, a

′
1, . . . , a

′
l′−1, 2a

′
0 − 1]}.

and proved the following theorem.

Theorem (Hashimoto). For any positive odd integer l′ and palindromic se-
quence of positive integers a′1, . . ., a

′
l′−1, up < p and the Ankeny-Artin-Chowla

conjecture holds for all primes p ∈ S′(l′; a′1, . . . , a
′
l′−1) with one possible excep-

tion. If the exception exists, then it is the least in S′(l′; a′1, . . . , a
′
l′−1).

The aim of this note is to obtain a similar theorem for arbitrary positive
square-free integers d. Let d be a positive integer. We denote the continued
fraction expansion of

√
d by

√
d = [a0, a1, . . .] = [a0, a1, . . . , ald ],

where ld is the length of the period of the continued fraction expansion. Then
ald = 2a0 and the sequence of positive integers a1, . . . , ald−1 is palindromic.
For a given positive integer l and a palindromic sequence of positive integers
a1, . . ., al−1, we define the set S(l; a1, . . . , al−1) by

S(l; a1, . . . , al−1) := {d ∈ Z | d > 0,
√
d = [a0, a1, . . . , al−1, 2a0]}.

Using Mc Laughlin’s work [3] on the continued fraction, we obtain the following
theorem similar to Hashimoto’s.

Theorem 1.1. For any positive integer l and palindromic sequence of positive
integers a1, . . ., al−1, ud < d for all square-free integer d ∈ S(l; a1, . . . , al−1)
with one possible exception. If the exception exists, then it is the least integer
in S(l; a1, . . . , al−1).

We note that if p is a prime congruent to 1 modulo 4, then lp is odd and
if p is a prime congruent to 3 modulo 4, then lp is even. Then from Theorem
1.1, we immediately have the following corollary on the Ankeny-Artin-Chowla
conjecture and the Mordell conjecture.
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Corollary 1.2. (i) For any odd positive integer l and palindromic sequence of
positive integers a1, . . ., al−1, up < p and the Ankeny-Artin-Chowla conjecture
holds for all primes p ∈ S(l; a1, . . . , al−1) with one possible exception. If the
exception exists, then it is the least integer in S(l; a1, . . . , al−1).

(ii) For any even positive integer l and palindromic sequence of positive in-
tegers a1, . . ., al−1, up < p and the Mordell conjecture holds for all primes
p ∈ S(l; a1, . . . , al−1) with one possible exception. If the exception exists, then
it is the least integer in S(l; a1, . . . , al−1).

On the other hand, Hashimoto [2] and Tomita [8] show that if p is a prime
congruent to 1 modulo 4 and the length of the period of the continued fraction
expansion of (1 +

√
p)/2 is 1, 3 or 5, then up < p. Similarly, we prove the

following propositions.

Proposition 1.3. For any positive square-free integer d such that ld ≤ 4,
ud < d. Specially Ankeny-Artin-Chowla conjecture and Mordell conjecture are
true for any prime p such that lp ≤ 4.

Proposition 1.4. For any positive square-free integer d such that ld = 5,
ud ̸≡ 0 (mod d). Specially Ankeny-Artin-Chowla conjecture for any prime p
such that lp = 5.

Remark. We note that ld ≤ 4 is the best upper bound such that ud < d for
all d with the length ld. For examples, let d be a prime number 701, then we
have

√
701 = [26, 2, 10, 10, 2, 52], l701 = 5, but u701 = 890. And let d be a

prime number 19, then we have
√
19 = [4, 2, 1, 3, 1, 2, 8], l19 = 6, but u19 = 39.

Moreover we can find infinitely many d such that ud > d and ld = 5. For
details, see Section 4.

2. Preliminaries

In [3, Section 2], Mc Laughlin gave an answer for the question; for which
palindromic sequences of positive integers a1, . . . an, do there exist positive
integers a0 and d such that

√
d = [a0, a1, . . . , an, 2a0]? We need his following

theorem.

Theorem 2.1 (Mc Laughlin). Let l be a positive integer and a1, . . . , al−1 be
a palindromic sequence of positive integers. Let Pi/Qi be the i-th approximant
of the continued fraction [0, a1, . . . , al−1]. Then there exist positive integers a0
and d such that

√
d = [a0, a1, . . . , al−1, 2a0](1)

if and only if Pl−2Ql−2 is even. And if there exists a positive integer d satisfying
(1), then

d = p(t) :=

{
(Ql−2Pl−2

2 + tQl−1)
2 + 2tPl−1 + P 2

l−2 if l is odd,

(−Ql−2Pl−2

2 + tQl−1)
2 + 2tPl−1 − P 2

l−2 if l is even,
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for some integer or half-integer t such that tQl−1 is an integer and

t >

{ −Ql−2Pl−2

2Ql−1
if l is odd,

Ql−2Pl−2

2Ql−1
if l is even.

For the relation between the continued fraction expansion of
√
d and the

fundamental unit of the real quadratic field Q(
√
d), the following theorem is

well-known (For example, see [4, Theorem 2.1.4]).

Theorem 2.2. Let d be a positive square-free integer and ϵd the fundamental
unit of the real quadratic field Q(

√
d). Let ld be the length of the period of the

continued fraction expansion of
√
d and P/Q the (ld − 1)-th approximant of it.

Then

ϵd = P +Q
√
d if d ̸≡ 1 (mod 4) or d ≡ 1 (mod 8),

ϵd = P +Q
√
d or ϵ3d = P +Q

√
d if d ≡ 5 (mod 8).

3. Proof of Theorem 1.1

Let l be a positive integer and a1, . . . , al−1 be a palindromic sequence of
positive integers. Let Pi/Qi be the i-th approximant of the continued fraction
[0, a1, . . . , al−1]. Suppose that d ∈ S(l; a1, . . . , al−1). Then by Theorem 2.1,

d =

{
(Ql−2Pl−2

2 + tQl−1)
2 + 2tPl−1 + P 2

l−2 if l is odd,

(−Ql−2Pl−2

2 + tQl−1)
2 + 2tPl−1 − P 2

l−2 if l is even

for some integer or half-integer t such that tQl−1 is an integer and

t >

{ −Ql−2Pl−2

2Ql−1
if l is odd,

Ql−2Pl−2

2Ql−1
if l is even.

We can write

t =

{
α+ −Ql−2Pl−2

2Ql−1
if l is odd,

α+ Ql−2Pl−2

2Ql−1
if l is even

for some positive α ∈ Q.
Then

d =

{
α2Q2

l−1 + 2αPl−1 − Ql−2Pl−2Pl−1

Ql−1
+ P 2

l−2 if l is odd,

α2Q2
l−1 + 2αPl−1 +

Ql−2Pl−2Pl−1

Ql−1
− P 2

l−2 if l is even.

Since
Pl−1Ql−2 + (−1)l−1 = Pl−2Ql−1,

d =

{
α2Q2

l−1 + 2αPl−1 − (Pl−2Ql−1−1)Pl−2

Ql−1
+ P 2

l−2 if l is odd,

α2Q2
l−1 + 2αPl−1 +

(Pl−2Ql−1+1)Pl−2

Ql−1
− P 2

l−2 if l is even.

So we have

d = α2Q2
l−1 + 2αPl−1 +

Pl−2

Ql−1
.
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If Ql−1 is odd and d is not the least element of S(l; a1, . . . , al−1), then α ≥ 1
and

d ≥ Ql−1
2 + 2Pl−1 +

Pl−2

Ql−1
> 2Ql−1.

If Ql−1 is even and d is not the least element of S(l; a1, . . . , al−1), then α ≥ 1/2
and

d ≥ 1

4
Ql−1

2 + Pl−1 +
Pl−2

Ql−1
.

So we have that d > 2Ql−1 for even Ql−1 ≥ 8. We note that Theorem 2.2
implies that ud ≤ 2Ql−1 (for some d ≡ 1 (mod 4), ud can be equal to 2Ql−1).
Thus we proved that if d is not the least element in S(l; a1, . . . , al−1), then

d > 2Ql−1 ≥ ud

except for the case Ql−1 is even and less than 8. If Ql−1 = 6, then d ∈
S(4; 1, 4, 1) or S(2; 6). If Ql−1 = 4, then d ∈ S(4; 1, 2, 1) or S(2; 4). If Ql−1 = 2,
then d ∈ S(3; 1, 1) or S(2; 2). For all such d, we can easily check that d > ud.
Thus we completely proved Theorem 1.2.

4. Proof of Propositions 1.3 and 1.4

To prove Propositions 1.3 and 1.4, we need the following lemma, which can
be obtained from Theorem 2.1 and the fact that it is permitted to substitute

a0 for (±Ql−2Pl−2

2 + tQl−1).

Lemma 4.1. Let d be a square-free integer such that
√
d=[a0, a1, . . . , al−1, 2a0]

for some positive integer a0 and some palindromic sequence of positive inte-
gers a1, . . . , al−1. Let Pi/Qi be the i-th approximant of the continued fraction

[0, a1, . . . , al−1]. Then we can write d = a0
2 + b where b = 2a0Pl−1+Pl−2

Ql−1
.

Proof of Proposition 1.3. We give a proof only for the case ld = 4. The other
cases can be proved in a similar way. Let d be a positive square-free integer
with ld = 4. Then

√
d = [a0,m, n,m, 2a0] for some positive integer a0, m, and

n and the approximants of the continued fraction [0,m, n,m] are

P0

Q0
=

0

1
,
P1

Q1
=

1

m
,
P2

Q2
=

n

mn+ 1
,
P3

Q3
=

mn+ 1

m2n+ 2m
.

By Lemma 4.1, we can write d = a20 + b, where b = 2a0(mn+1)+n
m2n+2m . Let 2a0 =

mk + r where k, r are non-negative integers with 0 ≤ r < m. Then we have
b = k +G, where G = (r(mn+ 1) + n− km)/(m2n+ 2m) < 1.

Case 1. G = 0 : Since r(mn+ 1) + n = mk,

2a0 = mk + r = n(rm+ 1) + 2r.
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If r = 0, then 2a0 = n and ld < 4. So we assume that r ̸= 0. If r ≥ 3 or n ≥ 8,
then

d > a0
2 =

(
n(rm+ 1) + 2r

2

)2

=
n2r2

4
m2 +

(
n2r

2
+ nr2

)
m+

n2

4
+ nr + r2 ≥ 2Q3.

By Theorem 2.2, ud ≤ 2Q4. Thus we have if r ≥ 3 or n ≥ 8, then

d > ud.

Suppose r < 3 and n < 8. Since m|(n+ r), m ≤ 9. For the finite number of d
with 0 < m ≤ 9, 0 < n < 8 and 0 < r < 3, we can easily check that d > ud.

Case 2. G ≤ −1 : Since r(mn+ 1) +m2n+ 2m+ n ≤ km,

2a0 = mk + r ≥ r(mn+ 2) +m2n+ 2m+ n,

and we have

d > a0
2 ≥

(
m2n+ 2m+ n

2

)2

= m2 +m3n+mn+ (m2n+ n)2/4.

So d > 2Q3 ≥ ud except for m = n = 1. If m = n = 1, since ld = 4,
d > 6 = 2Q3 ≥ ud. □
Proof of Proposition 1.4. Let d be a positive square-free integer with ld = 5.
Then

√
d = [a0;m,n, n,m, 2a0] for some positive integer a0, m, and n and the

approximants of the continued fraction [0,m, n, n,m] are

P0

Q0
=

0

1
,

P1

Q1
=

1

m
,

P2

Q2
=

n

mn+ 1
,

P3

Q3
=

n2 + 1

mn2 +m+ n
,

P4

Q4
=

mn2 +m+ n

m2n2 +m2 + 2mn+ 1
.

By Lemma 4.1, we can write d = a20 + b, where b = 2a0(mn2+m+n)+n2+1
m2n2+m2+2mn+1 . Let

2a0 = mk + r where k, r are non-negative integer with 0 ≤ r < m. Then we

have b = k +H, where H = r(mn2+m+n)+n2+1−k(mn+1)
m2n2+m2+2mn+1 < 1. We give a proof

only for the case H = 0. For the case H ≤ −1, by the similar method in the
proof of Proposition 1.3, we can show that d > 2Q4 except for d = 701. Thus
Theorem 2.2 implies that d > ud and ud ̸≡ 0 (mod d) except for d = 701. If
d = 701, then Q4 = 445 and u701 = 2Q4 = 890. So u701 ̸≡ 0 (mod 701).

Case H = 0 Since r(mn2 +m+ n) + n2 + 1 = k(mn+ 1),

k = rn+
rm+ n2 + 1

mn+ 1
,

and we have

2a0 = mk + r = r(mn+ 1) +m

(
rm+ n2 + 1

mn+ 1

)
.
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We note that (mn+1)|(rm+n2+1) and let rm+n2+1 = h(mn+1) for some
positive integer h. If r is odd, then both m and k are odd. Then the equation

r(mn2 +m+ n) + n2 + 1 = k(mn+ 1)

implies
(n+ 1 + n) + n+ 1 ≡ n+ 1 (mod 2),

which cannot hold. So r should be even. If r = 0, then the inequality

n(n− km) = k − 1 ≥ 0

implies that n ≥ km. If n > km, then n(n − km) > km ≥ k > k − 1. So n
should be equal to km. This implies that k = 1 and m = n. So 2a0 = m and
ld < 5. Thus we assume that r is a positive even integer. If r ≥ 2, then we
have

d > a0
2 =

r2m2n2

4
+

r2mn

2
+

rm2nh

2
+

r2

4
+

rmh

2
+

m2h2

4
≥ Q4,

where h = rm+n2+1
mn+1 . By Theorem 2.2, ud ≤ 2Q4. So if ud ≡ 0 (mod d), then

d = ud. If d ̸≡ 1 (mod 4), then d = ud = Q4. But it is impossible because
d > Q4. If d ≡ 1 (mod 4) and ud = 2Q4, then d = ud = 2Q4. But it is

impossible because d ≡ 1 (mod 4). If d ≡ 5 (mod 8) and ϵ3d = P4+Q4

√
d, then

d = ud = 8
3t2d+u2

dd
Q4 ≤ Q4 because 3t2d + u2

dd ≥ 8. But it is impossible because

d > Q4. So ud ̸≡ 0 (mod d). □

Remark. In the proof of the case H = 0 of Proposition 1.4, let r = 2, h = 2
and n+ 1 = 2m. Then we have

a0 =
(n+ 1)2

2
+ 1,

d =
(n+ 1)4

4
+ (n+ 1)2 + 1 + 2(n+ 1),

2Q4 =
(n+ 1)2n2

2
+

(n+ 1)2

2
+ 2n(n+ 1) + 2,

√
d = [(n+ 1)2/2 + 1, (n+ 1)/2, n, n, (n+ 1)/2, (n+ 1)2 + 2],

Q4 < d < 2Q4.

If n ≡ −1 (mod 8), then d ≡ 1 (mod 8) and ud = 2Q4 by Theorem 2.2. Thus
there are infinitely many d such that ud > d and ld = 5.
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