DOI QR코드

DOI QR Code

고-Lysine 보리 돌연변이 계통 M98 종실의 아미노산 조성 및 Proteome Profile 특성

Characterization of Grain Amino Acid Composition and Proteome Profile of a High-lysine Barley Mutant Line M98

  • 김대욱 (농촌진흥청 국립식량과학원) ;
  • 김홍식 (농촌진흥청 국제기술협력과) ;
  • 박형호 (농촌진흥청 국립식량과학원) ;
  • 황종진 (농촌진흥청 국립식량과학원) ;
  • 김선림 (농촌진흥청 국립식량과학원) ;
  • 이재은 (농촌진흥청 국립식량과학원) ;
  • 정건호 (농촌진흥청 국립식량과학원) ;
  • 황태영 (농촌진흥청 국립식량과학원) ;
  • 김정태 (농촌진흥청 국립식량과학원) ;
  • 김시주 (농촌진흥청 국립식량과학원) ;
  • ;
  • 권영업 (농촌진흥청 국립식량과학원)
  • 투고 : 2012.06.01
  • 심사 : 2012.06.21
  • 발행 : 2012.06.30

초록

본 연구는 찰쌀보리와 M98의 종실에 함유된 아미노산 조성 및 단백질 profile의 특성 차이를 분석하여 M98의 고-Lysine 및 함몰배유 형질에 관련된 생화학적 정보를 얻고자 수행하였으며, 그 결과를 요약하면 다음과 같다. 1. 찰쌀보리와 M98 종실의 총 16개 아미노산 조성을 분석한 결과, lysine을 비롯하여 총 6개 아미노산의 조성비가 M98에서 찰쌀보리에 비해 1.2~1.8배 높았다. Proline과 그것의 전구물질인 glutamic acid의 조성비는 M98에서 찰쌀보리에 비해 절반수준으로 낮았는데, glutamic acid를 전구물질로 하여 합성되는 arginine의 조성비는 M98에서 찰쌀보리보다 1.8배 높았다. 2. 찰쌀보리와 M98간의 종실 단백질을 이차원전기영동으로 분리한 결과, 총 70개 단백질 spot에서 발현양상의 차이가 확인되었다. 찰쌀보리에 비해 M98에서 발현양이 높은 단백질 spot은 44개였으며, 발현양이 낮은 단백질 spot은 18개였다. 나머지 8개 단백질 spot에서 7개의 발현은 찰쌀보리에서만 확인되었고, 1개의 발현은 M98에서만 확인되었다. 3. 찰쌀보리와 M98의 종실에서 발현양상 차이를 나타낸 총 53개의 단백질 spot을 선택하여 nESI-LC-MS/MS 방식으로 동정하였으며, 대부분의 단백질 spot은 종실의 다양한 생물학적 과정에 관여하는 단백질이었다. 특히, 28개 단백질 spot은 M98의 함몰배유 및 고-Lysine 형질과 연관된 단백질이었다. 4. 본 연구에서 밝혀진 M98 종실의 아미노산 조성 및 단백질 발현특성 정보는 향후 M98 유래 계통을 이용한 유전학적 검토 등을 통하여 고-Lysine 형질 연관 바이오마커 및 보리 신품종 개발에 유용한 정보로 활용될 수 있을 것으로 판단되었다.

Lysine is the first limiting essential amino acid in cereals for humans and monogastric animals, although its content is generally low. A chemically induced high-lysine barley mutant, M98, has an agronomically undesirable shrunken endosperm trait. In order to obtain detailed insight into the atypical traits of M98 grains, we characterized amino acid composition and protein profiles of M98 and its parent cultivar Chalssalbori. Among a total of 16 amino acids, the percentage of each of the 7 amino acids, including lysine, was 1.2~1.8 times higher in M98, comparing to Chalssalbori. The percentage of proline and its precursor, glutamic acid, in M98 was about the half of that of the amino acids in Chalssalbori, but arginine synthesized from glutamic acid was 1.8 times higher in M98, compared that in the parent cultivar. Theses results indicated that the mutation in M98 grains might alter the proportion of amino acids linked to each other in a biosynthetic pathway. A comparison of grain proteome profiles between Chalssalbori and M98 revealed 70 differentially expressed protein spots, where 45 protein spots were up-regulated and 25 protein spots down-regulated in M98 compared to those in Chalssalbori. Of these changed protein spots, 53 were identified using nano-electrospray ionization liquid chromatography mass spectrometry. Most of these identified proteins were involved in various biological processes. In particular, 28 protein spots such as ${\beta}$-amylase, serpins and B3-hordein were identified as proteins associated with the atypical traits of M98. It was thought that a genetic study on the unique protein profile of M98 would be needed to develop an agronomically feasible barley cultivar with high-lysine trait.

키워드

참고문헌

  1. Abebe, T., K. V. B. Melmaiee, and R. P. Wise. 2010. Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed. Funct. Integr. Genomics 10 : 191-205. https://doi.org/10.1007/s10142-009-0149-4
  2. Agrawal, G. K., N. S. Jwa, Y. Iwahashi, M. Yonekura, H. Iwahashi, and R. Rakwal. 2006. Rejuvenating rice proteomics: Facts, challenges, and visions. Proteomics 6 : 5549-5576. https://doi.org/10.1002/pmic.200600233
  3. Agrawal, G. K. and R. Rakwal. 2006. Rice proteomics : A cornerstone for cereal food crop proteomes. Mass Spec. Rev. 25 : 1-53. https://doi.org/10.1002/mas.20056
  4. Catusse, J., J. M. Strub, C. Job, A. V. Dorsselaer, and D. Job. 2008. Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression. PNAS. 105 : 10262-10267. https://doi.org/10.1073/pnas.0800585105
  5. Eggum, B. O., G. Brunsgaard, and J. Jensen. 1995. The nutritive value of new high-lysine barley mutants. J. Cereal Sci. 22 : 171-176. https://doi.org/10.1016/0733-5210(95)90047-0
  6. Finnie, C., S. Melchior, P. Roepstorff, and B. Svensson. 2002. Proteome analysis of grain filling and seed maturation in barley. Plant Physiol. 129 : 1308-1319. https://doi.org/10.1104/pp.003681
  7. Finnie, C., K. S. Bak-Jensen, S. Laugesen, P. Roepstorff, and B. Svensson. 2006. Differential appearance of isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome. Plant Sci. 170 : 808-821. https://doi.org/10.1016/j.plantsci.2005.11.012
  8. Finnie, C., and B. Svensson. 2009. Barley seed proteomics from spots to structures. J. Proteome Res. 72 : 315-324. https://doi.org/10.1016/j.jprot.2008.12.001
  9. Hejgaard, J., and S. Boisen. 1980. High-lysine proteins in Hiproly barley breeding : Identification. nutritional significance and new screening methods. Hereditas 93 : 311-320.
  10. Hirota, N., T. Kaneko, H. Kuroda, H. Kaneda, M. Takashio, K. Ito, and K. Takeda. 2005. Characterization of lipoxygenase-1 null mutants in barley. Theor. Appl. Genet. 111 : 1580-1584. https://doi.org/10.1007/s00122-005-0088-y
  11. Jensen, J. and H. Doll. 1979. Gene symbols for barley highlysine mutants. Barley Genet. Newsl. 9 : 33-37.
  12. Johnson, P. E., N. J. Patron, A. R. Bottrill, J. R. Dinges, B. F. Fahy, M. L. Parker, D. N. Waite, and K. Denyer. 2003. A low-starch barley mutant, Riso 16, lacking the cytosolic small subunit of ADP-Glucose pyrophosphorylase, reveals the importance of the cytosolic isoform and the Identity of the plastidial small subunit. Plant Physiol. 131 : 684-696. https://doi.org/10.1104/pp.013094
  13. Kim, H. S., D. W. Kim, S. L. Kim, S. B. Baek, H. H. Park, J. J. Hwang, and S. J. Kim. 2011. Characterization of a new high-lysine mutant in barley (Hordeum vulgare L.). Kor. J. Breed. Sci. 43 : 307-314.
  14. Kim, S. L., B. Y. Son, T. W. Jung, H. G. Moon, and J. R. Son. 2006. Characterization on fatty acids and amino acids of quality protein maize lines. Korean J. Crop Sci. 51 : 458-465.
  15. Klemsdal, S. S., O. A. Olsen, and K. A. Rorvik. 1987. The barley high lysine genes of mutants 1508 and 527 alter hordein polypeptide composition quantitatively, but not qualitatively. Hereditas 107 : 107-114.
  16. Kottapalli, K. R., P. Payton, R. Rakwal, G. K. Agrawal, J. Shibato, M. Burow, and N. Puppala. 2008. Proteomics analysis ofmature seed of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritional, and allergenic proteins. Plant Sci. 175 : 321-329. https://doi.org/10.1016/j.plantsci.2008.05.005
  17. Kreis, M. and H. Doll. 1980. Starch and prolamin level in single and double high-lysine barley mutants. Physiol. Plant. 48 : 139-143. https://doi.org/10.1111/j.1399-3054.1980.tb03233.x
  18. Lange, M., E. Vincze, H. Wieser, J. K. Schjoerring, and P. B. Holm. 2007. Suppression of C-Hordein synthesis in barley by antisense constructs results in a more balanced amino acid composition. J. Agric. Food Chem. 55 : 6074-6081. https://doi.org/10.1021/jf0709505
  19. Lea, R. and J. Mundy. 1989. The bifunctional ${\alpha}$-amylase/subtilisin inhibitor of barley : nucleotide sequence and patterns of seed-specific expression. Plant Mol. Biol. 12 : 673-682. https://doi.org/10.1007/BF00044158
  20. Lee, K. O., H. H. Jang, B. G. Jung, Y. H. Chi, J. Y. Lee, Y. O. Choi, J. R. Lee, C. O. Lim, M. J. Cho, and S. Y. Lee. 2000. Rice 1 Cys-peroxiredoxin over-expressed in transgenic tobacco does not maintain dormancy but enhances antioxidant activity. FEBS Lett. 486 : 103-106. https://doi.org/10.1016/S0014-5793(00)02230-4
  21. Mertz, E. T., L. S. Bates, and O. E. Nelson. 1964. Mutant gene that changes protein composition and increases lysine content in maize endosperm. Science 145 : 279-280. https://doi.org/10.1126/science.145.3629.279
  22. Noctor, G. and C. H. Foyer. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49 : 249-279. https://doi.org/10.1146/annurev.arplant.49.1.249
  23. Oria, M. P., B. R. Hamaker, and J. D. Axtell. 2000. A highly digestible sorghum cultivar exhibits a unique folded structure of endosperm protein bodies. PNAS. 97 : 5065-5070. https://doi.org/10.1073/pnas.080076297
  24. Patron, N. J., B. Greber, B. F. Fahy, D. A. Laurie, M. L. Parker, and K. Denyer. 2004. The lys5 Mutations of Barley Reveal the Nature and Importance of Plastidial ADP-Glc Transporters for Starch Synthesis in Cereal Endosperm. Plant Physiol. 135 : 2088-2097. https://doi.org/10.1104/pp.104.045203
  25. Roberts, T. H. and J. Hejgaard. 2008. Serpins in plants and green algae. Funct. Integr. Genomics 8 : 1-27. https://doi.org/10.1007/s10142-007-0059-2
  26. Rolletschek, H., M. R. Hajirezaei, U. Wobus, and H. Weber. 2002. Antisense-inhibition of ADP-glucose pyrophosphorylase in Vicia narbonensis seeds increases soluble sugars and leads to higher water and nitrogen uptake. Planta 214 : 954-964. https://doi.org/10.1007/s00425-001-0710-4
  27. Salcedo, G., R. Sanchez-Monge, A. Argamenteria, and C. Aragoncillo. 1980. The A-hordeins as a group of salt soluble hydropphobic proteins. Plant Sci. Letters. 19 : 109-119. https://doi.org/10.1016/0304-4211(80)90086-3
  28. Shen-Miller, J., M. Kreis, P. R. Shewry, and D. R. Springall. 1991. Spatial distribution of ${\beta}$-amylase in germinating barley seeds based on the avidin-biotin-peroxidase complex method. Protoplasma 163 : 162-173. https://doi.org/10.1007/BF01323340
  29. Shewry, P. R., A. J. Faulks, B. J. Miflin. 1980. Effect of high-lysine mutations on the protein fractions of barley grain. Biochem. Genet. 18 : 133-151. https://doi.org/10.1007/BF00504365
  30. Shewry, P. R., S. Parmar, B. Buxton, M. D. Gale, C. J. Liu, J. Hejgaard, and M. Kreis. 1988. Multiple molecular forms of ${\beta}$-amylase in seeds and vegetative tissues of barley. Planta 176 : 127-134. https://doi.org/10.1007/BF00392488
  31. Shewry, P. R., H. M. Pratt, M. J. Charlton, and B. J. Miflin. 1977. Two-dimensional separation of the prolamins of normal and high lysine barley (Hordeum vulgare L.). J. Exp. Bot. 104 : 597-606.
  32. Skylas, D. J., D. Van Dyk, and C. W. Wrigley. 2005. Proteomics of wheat grain. J. Cereal Sci. 41 : 165-179. https://doi.org/10.1016/j.jcs.2004.08.010
  33. Tallberg, A. 1982. Characterization of high-lysine barley genotypes. Hereditas 96 : 229-245.
  34. Westermeier, R., T. Naven, and H. R. Hoker. 2008. Proteomics in practice : a guide to successful experimental design, 2nd ed. Wiley-VCH, Germany. pp. 309-356.
  35. Witzel, K., A. Weidner, G. K. Surabhi, R. K. Varshney, G. Kunze, G. H. Buck-Sorlin, A. Borner, and H. P. Mock. 2010. Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell Environ. 33 : 211-222. https://doi.org/10.1111/j.1365-3040.2009.02071.x
  36. Yang, G., P. B. Schwarz, and B. A. Vick. 1993. Purification and characterzation of lipoxygenase isozymes in germinating barley. Cereal. Chem. 70 : 589-595.
  37. Zhou, X., J. Li, W. Cheng, H. Liu, M. Li, Y. Zhang, W. Li, S. Han, and Y. Wang. 2010. Gene structure analysis of rice ADP-ribosylation factors(OsARFs) and their mRNA expression in developing rice plants. Plant Mol. Biol. Rep. 28 : 692-703. https://doi.org/10.1007/s11105-010-0200-6

피인용 문헌

  1. Changes in the Nutritional Compositions of Soybean Sprouts Cultivated with Bamboo Ash vol.31, pp.3, 2016, https://doi.org/10.7318/KJFC/2016.31.3.213
  2. Abscisic acid 농도에 따른 밀 종자의 발아와 단백질체의 발현 특성 vol.63, pp.1, 2012, https://doi.org/10.7740/kjcs.2018.63.1.025