DOI QR코드

DOI QR Code

γ-Aminobutyric Acid Metabolism in Plant under Environment Stressses

  • Ham, Tae-Ho (Agricultural Science, Korea National Open Univerisity) ;
  • Chu, Sang-Ho (Agricultural Science, Korea National Open Univerisity) ;
  • Han, Sang-Jun (Agricultural Science, Korea National Open Univerisity) ;
  • Ryu, Su-Noh (Agricultural Science, Korea National Open Univerisity)
  • Received : 2012.03.07
  • Accepted : 2012.06.05
  • Published : 2012.06.30

Abstract

${\gamma}$-Aminobutyric acid (GABA) is a non-protein amino acid that is widely distributed in plant and animal kingdom. GABA is found in tissues of the central nervous system (CNS) in animals. GABA functions as a the major inhibitory neurotransmitter in the CNS by acting through the GABA receptors. Clinical studies have revealed the relationship between an increased intake of GABA or analogues with several health benefits, including lowering of blood pressure in mildly hypertensive animals and humans. Furthermore, GABA would also has an inhibitory effect on cancer cell proliferation, stimulates cancer cell apoptosis and plays a role in alcohol-associated diseases and schizophrenia. In plants, interest in the GABA emerged mainly from experimental observations that GABA is largely and rapidly produced in large amounts in response to biotic and abiotic stresses. In this study, we speculated the properties and metabolism of GABA in plant and functions in relation to the responses to environmental stresses.

Keywords

References

  1. Adeghate, E. and A. S. Ponery. 2002. GABA in the endocrine pancreas : Cellular localization and function in normal and diabetic rats, Tissue Cell 34 : 1-6. https://doi.org/10.1054/tice.2002.0217
  2. Aurisano, N., A. Bertani, and R. Reggiani. 1995. Anaerobic accumulation of 4-aminobutyrate in rice seedlings ; causes and significance. Phytochemistry 38 : 1147-1150. https://doi.org/10.1016/0031-9422(94)00774-N
  3. Bouche, Nicolas and Fromm, Hillel. 2004. GABA in plants: just a metabolite?. Trends in Plant Science 9(3) : 110-115. https://doi.org/10.1016/j.tplants.2004.01.006
  4. Bown, A. W. and B. J. Shelp. 1997. The metabolism and functions of ${\gamma}$-aminobutyric acid. Plant Physiology 115 : 1-5. https://doi.org/10.1104/pp.115.1.1
  5. Hagiwara, H., T. Seki, and T. Ariga. 2004. The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats, Bioscience, Biotechnology, Biochemistry 68 : 444-447. https://doi.org/10.1271/bbb.68.444
  6. Caputo, F., T. Vignoli, I. Maremmani, M. Bernardi, G. And Zoli. 2009. Gamma hydroxybutyric acid(GHB) for the treatment of alcohol dependence : A review, International Journal of Environmental Research and Public Health 6(5) : 1917-1929. https://doi.org/10.3390/ijerph6061917
  7. Castanie-Cornet, M. P., T. A. Penfound, D. Smith, J. F. Elliott, and J. W. Foster. 1999. Control of acid resistance in Escherichia coli. Journal of Bacteriology 181 : 3525-3535.
  8. Crawford, L. A., A. W. Bown, K. E. Breitkreuz, and F. C. Guinel. 1994. The synthesis of ${\gamma}$-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiology 104 : 865-871. https://doi.org/10.1104/pp.104.3.865
  9. Deborah, L., M. C. Crittenden, and J. T. Meredith Jordan. 2004. Stabilization of Zwitterions in Solution: ${\gamma}$-Aminobutyric Acid (GABA), Journal of Physical Chemistry A 108 : 203-211. https://doi.org/10.1021/jp036700i
  10. Dent, C. E. 1947. Detection of the free amino acids of plant cells by partition chromatography. Nature 160 : 682-683. https://doi.org/10.1038/160682a0
  11. Hanower, P. and J. Brzozowska. 1975. Influence d'un chocosmotique sur la composition des feuilles de cotonnier en acides amines libres. Phytochemistry 14 : 1691-1694. https://doi.org/10.1016/0031-9422(75)85275-7
  12. Hao, R. and J. C. Schmit. 1991. Purification and Characterization of glutamate decarboxylase from Neurospora crassa conidia. Journal of Biological Chemistry 266 : 5135-5139.
  13. Kinnersley, A. M. and F. Lin. 2000. Receptor modifirs indicate that GABA is a potential modulator of ion transport in plants. Plant Growth Regulation 32 : 65-76. https://doi.org/10.1023/A:1006305120202
  14. Kinnersley, A. M. and F. J. Turano. 2000. Gamma aminobutyric acid(GABA) and plant responses to stress, Critical Reviews of Plant Science 19 : 479-509. https://doi.org/10.1016/S0735-2689(01)80006-X
  15. Lawrence, J. and Ph, D. Machlin. 1995, Critical assessment of the epidemiological data concerning the impact of antioxidant mutrients on cancer and cardiovascular disease, Critical Reviews in Food Science and Nutrition 35 : 41-50. https://doi.org/10.1080/10408399509527684
  16. Mayer, R. R., J. L. Cherry, and D. Rhodes. 1990. Effects of heat shock on amino acid metabolism of cowpea cells. Phytochemistry 94 : 796-810.
  17. Mody, I., Y. Dekoninck, T. S. Otis, and I. Soltesz. 1994. Bringing the cleft at GABA synapses in the brain, Trends Neuroscienc. 17 : 517-525. https://doi.org/10.1016/0166-2236(94)90155-4
  18. Naylor, A. W. and N. E. Tolbert. 1956. Glutamic acid metabolism in green and etiolated barley levaes. Physiologia Plantarum 9 : 2200-229.
  19. Oh, C. H., S. H. Oh. 2004. Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis, Journal of Medicinal Food 7(1) : 19-23. https://doi.org/10.1089/109662004322984653
  20. Oh, C. H., S. H. Oh. 2003. Brown rice extracts with enhanced levels of gamma-aminobutyric acid inhibit cancer cell proliferation, Faseb Journal 17(5) : A1157.
  21. Ramputh, A. I. and A. W. Bown. 1996. Rapid ${\gamma}$-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae. Plant Physiology 111 : 1349-1352. https://doi.org/10.1104/pp.111.4.1349
  22. Roberts, J. K. M., J. Callis, D. Wemmer, V. Walbot, and O. Jardetzky. 1984. Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc. Natl. Acad. Sci. U. S. A. 81 : 3379-3383. https://doi.org/10.1073/pnas.81.11.3379
  23. Roos, W., S. Evers, M. Hiek, M. Tschope, and B. Schumann. 1999. Shifts of intracellular pH distribution as a part of the signal mechanism leading to the elicitation of benzophenanthridine alkaloids. Phytoalexin biosysnthesis in cultured cells of Eschscholtzia californica. Plant Physiology 118 : 349-364.
  24. Reggiani, R., C. A. Cantu, I. Brambilla, and A. Bertain. 1988. Accumulation and interconversion of amino acids in rice roots under anoxia. Plant Cell Physiology 29 : 981-987.
  25. Satya Narayan, V. and P. M. Nair. 1990. Metabolism, enzymology and possible roles of 4-amninobutyrate in higher plants. Phytochemistry 29(2) : 367-375. https://doi.org/10.1016/0031-9422(90)85081-P
  26. Shelp, J. B., W. A. Bown, D. M. McLean. 1999. Metabolism and functions of gamma-aminobutyric acid, Trends in Plant Science 4(11) : 446-452. https://doi.org/10.1016/S1360-1385(99)01486-7
  27. Shelp. J. B., S. C. Walton, A. W. Snedden, G. L. Tuin, J. I. Oresnik, and B. D. Layzell. 1995. GABA shunt in developing soybean seeds in associated with hypoxia. Physiologia Plantarum 94 : 219-228. https://doi.org/10.1111/j.1399-3054.1995.tb05304.x
  28. Shukuya, R. and G. W. Schwert. 1960. Glutamic acid decarboxylase. I. Isolation procedures and properties of the enzyme. Journal of Biological Chemistry 235 : 1649-1652.
  29. Snedden, W. A., I. Chung, R. H. Pauls, and A. W. Bown. 1992. Proton/L-goutamate symport and the regulation of intracellular pH in siolated mesophyll cells. Plant Physiology 108 : 543-549.
  30. Snedden, W. A., T. Arazi, H. Fromm, and B. J. Shelp. 1995. Calcium/calmodulin activation of soybean glutamate decarboxylase. Plant Physiology 108 : 543-549. https://doi.org/10.1104/pp.108.2.543
  31. Snedden, W. A., N. Koutsia, G. Baum, and H. Fromm. 1996. Activation of a petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal anti-body which recognizes the calmodulin binding domain. Journal of Biological Chemistry 108 : 543-549.
  32. Steward, F. C., J. F. Thompson, and C. E. Dent. 1949. ${\gamma}$-aminobutyric acid: a constituent of the potato tuber? Science 110 : 439-440.
  33. Subbaiah, C. C., D. S. Bush, and M. M. Sacks. 1998. Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiology 118 : 759-771. https://doi.org/10.1104/pp.118.3.759
  34. Tognioli, L. and L. Basso. 1987. The fusicoccin-stimulated phosphorylation of a 33-kDa polypeptide in cells of Acer pseudoplatanus as influenced by extarcellular and inetrcellular pH. Plant Cell and Environment 10 : 233-239.
  35. Tsushida, T. and T. Murai. 1987. Conversion of glutamic acid to ${\gamma}$-aminobutyric acid in tea leaves under anaerobic conditions. Agricultural and Biological Chemistry 51 : 2865-2871. https://doi.org/10.1271/bbb1961.51.2865
  36. Turano, F. J. and T. K. Fang. 1998. Characterization of two glutamate decarboxylase cDNA clones from Arabidopsis thaliana. Plant Physiology 117 : 1411-1421. https://doi.org/10.1104/pp.117.4.1411
  37. Van der Luit, A. H., C. Olivari, A. Haley, M. R. Knight, and A. J. Terwavas. 1999. Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiology 121 : 705-714. https://doi.org/10.1104/pp.121.3.705
  38. Wallace, W., J. Secor, and L. E. Schrader. 1984. Rapid accumulation of ${\gamma}$-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation. Plant Physiology 75 : 170-175. https://doi.org/10.1104/pp.75.1.170
  39. Wu, J. Y., T. Matsuda, and E. Roberts. 1974. Purification and characterization of glutamate decarboxylase from mouse brain. Journal of Biological Chemistry 245 : 3029-3034.
  40. Yun, S. J. and S. H. Oh. 1998. Cloning and characterization of tobacco cDNA encoding calcium/calmodulin-dependent glutamate decarboxylase. Molecules and Cells 8 : 125-129.

Cited by

  1. Collection and Chemical Composition of Phloem Sap from Citrus sinensis L. Osbeck (Sweet Orange) vol.9, pp.7, 2014, https://doi.org/10.1371/journal.pone.0101830
  2. Metabolite signature of the phloem sap of fourteen citrus varieties with different degrees of tolerance to Candidatus Liberibacter asiaticus vol.97, 2017, https://doi.org/10.1016/j.pmpp.2016.11.004
  3. Effects of Citrus tristeza closterovirus infection on phloem sap and released volatile organic compounds in Citrus macrophylla vol.98, 2017, https://doi.org/10.1016/j.pmpp.2017.03.003
  4. A plant pathogenic bacterium exploits the tricarboxylic acid cycle metabolic pathway of its insect vector 2017, https://doi.org/10.1080/21505594.2017.1339008
  5. Application of gamma-aminobutyric acid increased the level of phytohormones in Citrus sinensis vol.248, pp.4, 2018, https://doi.org/10.1007/s00425-018-2947-1
  6. Progress and Obstacles in Culturing ‘Candidatus Liberibacter asiaticus’, the Bacterium Associated with Huanglongbing vol.109, pp.7, 2012, https://doi.org/10.1094/phyto-02-19-0051-rvw
  7. Challenges and Prospects of New Plant Breeding Techniques for GABA Improvement in Crops: Tomato as an Example vol.11, pp.None, 2012, https://doi.org/10.3389/fpls.2020.577980
  8. Proteomic and Metabolomic Profilings Reveal Crucial Functions of γ-Aminobutyric Acid in Regulating Ionic, Water, and Metabolic Homeostasis in Creeping Bentgrass under Salt Stress vol.19, pp.2, 2012, https://doi.org/10.1021/acs.jproteome.9b00627
  9. The use of deuterium-labeled gamma -aminobutyric (D 6 -GABA) to study uptake, translocation, and metabolism of exogenous GABA in plants vol.16, pp.1, 2012, https://doi.org/10.1186/s13007-020-00574-9