• Title/Summary/Keyword: GABA accumulation

Search Result 9, Processing Time 0.023 seconds

γ-Aminobutyric Acid Metabolism in Plant under Environment Stressses

  • Ham, Tae-Ho;Chu, Sang-Ho;Han, Sang-Jun;Ryu, Su-Noh
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.2
    • /
    • pp.144-150
    • /
    • 2012
  • ${\gamma}$-Aminobutyric acid (GABA) is a non-protein amino acid that is widely distributed in plant and animal kingdom. GABA is found in tissues of the central nervous system (CNS) in animals. GABA functions as a the major inhibitory neurotransmitter in the CNS by acting through the GABA receptors. Clinical studies have revealed the relationship between an increased intake of GABA or analogues with several health benefits, including lowering of blood pressure in mildly hypertensive animals and humans. Furthermore, GABA would also has an inhibitory effect on cancer cell proliferation, stimulates cancer cell apoptosis and plays a role in alcohol-associated diseases and schizophrenia. In plants, interest in the GABA emerged mainly from experimental observations that GABA is largely and rapidly produced in large amounts in response to biotic and abiotic stresses. In this study, we speculated the properties and metabolism of GABA in plant and functions in relation to the responses to environmental stresses.

Effects of physico-chemical treatment on 'Nunkeunhukchal' (black sticky rice with giant embryo) for the enhancement of GABA (γ- aminobutyric acid) contents ('눈큰흑찰'의 가바(GABA) 함량 증진을 위한 이화학적 처리 효과)

  • Han, Sang-Ik;Ra, Ji-Eun;Seo, Kyung-Hye;Park, Ji-Young;Seo, Woo Duck;Park, Dong-Soo;Cho, Jun-Hyun;Lee, Jong-Hee;Sim, Eun-Yeong;Nam, Min-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.398-405
    • /
    • 2014
  • We assessed the GABA accumulation and other components after the 'Nunkeunhukchal (BGE)', 'Josanghukchal (BR)', and 'Ilmibyeo (IB)' grain was soaked in water for 24, 36, 48, 60, 72 and 96 hr. The results showed a continuous accumulation of GABA in soaking treated brown rice of BGE and IB. Among the treated hours, 72 hours of soaking had the maximal accumulation of GABA (51.4 mg/100 g), amino acid, polyphenol and other components. The activities of glutamate decarboxylase (GAD) in brown rice and rice-bran were the same in BGE rice. However, the formation of GABA treated with L-glutamate as substrate showed dramatic increase of 354.6 (fourteen times higher than normal extraction) and 726.4 mg/100 g in BGE rice and rice-bran, respectively. These results suggested that the soaking and extraction with L-glutamate buffer could be better methods for the harvest of increased GABA.

Implications of paraquat and hydrogen peroxide-induced oxidative stress treatments on the GABA shunt pathway in Arabidopsis thaliana calmodulin mutants

  • Al-Quraan, Nisreen A.;Locy, Robert D.;Singh, Narendra K.
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.225-234
    • /
    • 2011
  • Arabidopsis mutants with T-DNA insertion in seven calmodulin genes (CAM) were used to determine the specific role of CAM in the tolerance of plants to oxidative stress induced by paraquat and hydrogen peroxide ($H_2O_2$) treatments. Arabidopsis calmodulin mutants (cam) were screened for seedling growth, seed germination, induced oxidative damage, and levels of ${\gamma}$-aminobutyric acid (GABA) shunt metabolites. Only the cam5-4 and cam6-1 mutants exhibited an increased sensitivity to paraquat and $H_2O_2$ during seed germination and seedling growth. In response to treatments with $3{\mu}M$ paraquat and 1 mM $H_2O_2$, only the cam5-4, cam6-1 mutants showed significant changes in malonaldehyde (MDA) levels in root and shoot tissues, with highly increased levels of MDA. In terms of the GABA shunt metabolites, GABA was significantly elevated in root and shoot tissues in response to the paraquat treatments in comparison to alanine and glutamate, while the levels of all shunt metabolites increased in root tissue but not in the shoot tissue following the $H_2O_2$ treatments. GABA, alanine and glutamate levels were significantly increased in root and shoot of the cam1, cam4, cam5-4, and cam6-1 mutants in response to paraquat (0.5, 1 and $3{\mu}M$), while they were increased only in the root tissue of the cam1, cam4, cam5-4, and cam6-1 mutants in response to $H_2O_2$ (200 and $500{\mu}M$, 1 mM). These data show that the cam5-4 and cam6-1 mutants were sensitive to the induced oxidative stress treatments in terms of seed germination, seedling growth, and oxidative damage. The accumulation of GABA shunt metabolites as a consequence of the induced oxidative stress treatments (paraquat and $H_2O_2$ treatments) suggests that the GABA shunt pathway and the accumulation of GABA metabolites may contribute in antioxidant machinery associated with reactive oxygen species and in the acquisition of tolerance in response to induced oxidative stress in Arabidopsis seedlings.

Characteristics of Potential Gamma-Aminobutyric Acid-Producing Bacteria Isolated from Korean and Vietnamese Fermented Fish Products

  • Vo, Thi Thu-Thao;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.209-221
    • /
    • 2019
  • Gamma-aminobutyric acid (GABA) is a neurotransmitter that exerts several physiological functions and positive effects on human health. The aim of this study was to isolate and characterize the strains that had GABA-producing abilities from various fermented fish products. A total of 91 acid-producing strains were isolated from 41 samples of fermented fish products, and 27 strains showing GABA-producing abilities were identified by the 16S rDNA sequences. Among the strains, 31% strains tolerated at high-salt environment of 10-20% throughout the fermentation of fish sauces. The 27 isolates that produced GABA at various concentrations did so in the range of 5 to 454 mM. These GABA-producing isolates were identified as lactic acid bacteria of 14 strains, which included twelve Lactococcus lactis, one Enterococcus faecium, and one Lactococcus pentosus; eight Bacillus cereus group, which included seven B. thuringiensis and one B. cereus; and five Staphylococcus spp. Interestingly, with Vietnamese fish sauces, we mostly identified species of B. thuringiensis and Staphylococcus spp., while with Korean fermented fish products, the majority of the strains identified belonged to L. lactis. Among the strains, B. thuringiensis LH2134 produced the highest levels of GABA at 366 mM among the strains identified from Vietnamese fish sauces, whereas L. lactis LA43, a new strain isolated from Korean jeotgal (salted shrimp paste), produced the highest amount of GABA at 454 mM and the glutamate concentration in the medium was essential for GABA accumulation. Therefore, such the isolates might serve as good starters for development of more GABA-reinforced foods among fermented fish products.

Effect of fermented sarco oyster extract on age induced sarcopenia muscle repair by modulating regulatory T cells

  • Kyung-A Byun;Seyeon Oh;Sosorburam Batsukh;Kyoung-Min Rheu;Bae-Jin Lee;Kuk Hui Son;Kyunghee Byun
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.406-422
    • /
    • 2023
  • Sarcopenia is an age-related, progressive skeletal muscle disorder involving the loss of muscle mass and strength. Previous studies have shown that γ-aminobutyric acid (GABA) from fermented oysters aids in regulatory T cells (Tregs) cell expansion and function by enhancing autophagy, and concomitantly mediate muscle regeneration by modulating muscle inflammation and satellite cell function. The fermentation process of oysters not only increases the GABA content but also enhances the content of branched amino acids and free amino acids that aid the level of protein absorption and muscle strength, mass, and repair. In this study, the effect of GABA-enriched fermented sarco oyster extract (FSO) on reduced muscle mass and functions via Treg modulation and enhanced autophagy in aged mice was investigated. Results showed that FSO enhanced the expression of autophagy markers (autophagy-related gene 5 [ATG5] and GABA receptor-associated protein [GABARAP]), forkhead box protein 3 (FoxP3) expression, and levels of anti-inflammatory cytokines (interleukin [IL]-10 and transforming growth factor [TGF]-β) secreted by Tregs while reducing pro-inflammatory cytokine levels (IL-17A and interferon [IFN]-γ). Furthermore, FSO increased the expression of IL-33 and its receptor IL-1 receptor-like 1 (ST2); well-known signaling pathways that increase amphiregulin (Areg) secretion and expression of myogenesis markers (myogenic factor 5, myoblast determination protein 1, and myogenin). Muscle mass and function were also enhanced via FSO. Overall, the current study suggests that FSO increased autophagy, which enhanced Treg accumulation and function, decreased muscle inflammation, and increased satellite cell function for muscle regeneration and therefore could decrease the loss of muscle mass and function with aging.

Profiling Metabolites Expressed Corn Root Under Waterlogging

  • Jae-Han Son;Young-Sam Go;Hwan-Hee Bae;Kyeong-Min Kang;Beom-Young Son;Seonghyu Shin;Tae-Wook Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.289-289
    • /
    • 2022
  • Waterlogging tolerance of corn is one of the important factor for cultivate in paddy soil condition to increase cultivation area and self-sufficiency of corn in Korea. In order to develop elite waterlogging tolerance corn, the new corn lines bred by crossing wild corn, Teosinte, and cultivated corn inbred lines. Five accessions among the 2 species, Zea mays sub spp. mexicana and Zea mays spp. parviglumis, of 81 Teosinte were selected through the waterlogging treatment. The waterlogging treatments were implemented for 7 days at the seedling(V3) stage. The inbred lines were developed by crossing 5 teosinte accessions and cultivated corn lines and they were estimated waterlogging tolerance. It was screened and analyzed the metabolites extracted from roots of 19KT-32(KS141 × teosinte) that was treated waterlogging. We selected 8 of 180 metabolites like as γ-aminobutyric acid(GABA), putrescine, citrulline, Gly, and Ala that expression was remarkably changed over 2.5-times, 7 metabolites increased and 1 metabolite decreased in waterlogging, respectively. Glutamate decarboxylase(GAD) catalyzing GABA accumulation gene have 10 haplotypes, and exon1 was highly conserved, but identified to 135 SNPs after the first intron. Among the 135 SNPs, the number of transversion mutations (52) surpassed the number of transition mutations (38). Most of metabolites were related to abiotic stress in plant that it regulated to pH, osmotic pressure K+/Ca++ and ATPase activity. We are analyzing the association using these results for increase breeding efficiency.

  • PDF

Differentiation of Barley Response to Drought and Salt Stress in Antioxidant Enzyme Activity and Free Amino Acid Content (염해 및 한발에 대한 보리의 생화학적 반응 - 항산화효소 활성 및 아미노산 함량의 변화)

  • Kim, Dea-Wook;Heo, Hwa-Young;Suh, Sae-Jung;Lee, Yeong-Ho;Kim, Si-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.133-138
    • /
    • 2006
  • To differentiate barley responses to drought and salt stress, barley seedlings at the second leaf stage were treated with 218 mM NaCl and 29.5% PEG6000 iso-osmotic to 218 mM NaCl for 6 days. Shoot fresh weight and leaf relative water content of barley seedlings were more reduced by drought compared to salt stress. Hydrogen peroxide content increased under both stress conditions, but its accumulation was more severe at 6 days after salt stress. The activity of ascorbate peroxidase, glutathione reductase (GR) and catalase (CAT) was enhanced until 4 days after salt stress. On the other hand, the activity of GR and CAT increased gradually until 6 days after drought. Among the amino acids measured in this study, the accumulation of glycine, arginine and GABA (${\gamma}-aminobutyric$ acid) was lower under salt stress than drought. However, considerably larger amount of proline was accumulated by salt stress. It is concluded that the antioxidant enzymes activity and amino acid content of barley seed-lings were differently regulated in response to the isoosmotic condition of salt and drought stress.

GABA-enriched Fermented Laminaria japonica Protects against Alcoholic Hepatotoxicity in Sprague-Dawley Rats

  • Cha, Jae-Young;Lee, Bae-Jin;Je, Jae-Young;Kang, Young-Mi;Kim, Young-Mog;Cho, Young-Su
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.79-88
    • /
    • 2011
  • The sea tangle, Laminaria japonica has long been used in Korea as a folk remedy to promote health. Gamma-amino butyric acid-enriched (5.56% of dry weight) sea tangle was obtained by fermentation with Lactobacillus brevis BJ-20 (FLJ). A suppressive effect of FLJ on carbon tetrachloride-induced hepatotoxicity has been shown previously. Alcohol administration to Sprague-Dawley rats leads to hepatotoxicity, as demonstrated by heightened levels of hepatic marker enzymes as well as increases in both the number and volume of lipid droplets as fatty liver progresses. However, FLJ attenuated alcohol-induced hepatotoxicity and the accumulation of lipid droplets following ethanol administration. Additionally, FLJ increased the activities and transcript levels of major alcoholmetabolizing enzymes, such as alcohol dehydrogenase and aldehyde dehydrogenase, and reduced blood concentrations of alcohol and acetaldehyde. These data suggest that FLJ protects against alcohol-induced hepatotoxicity and that FLJ could be used as an ingredient in functional foods to ameliorate the effects of excessive alcohol consumption.

Biological Activities and Physiochemical Properties of Gangwon-do Endemic Makjang Products (강원도 시판 막장제품의 이화학적 품질특성 및 생리활성 조사)

  • Kim, Byoung-Mok;Jung, Jee-Hee;Lim, Ji-Hoon;Jung, Min-Jeong;Jeong, Jae-Whung;Choi, Yong-Suck;Sim, Jea-Man;Jeong, In-Hak;Kim, Young-Myoung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.862-873
    • /
    • 2015
  • In this study, we investigated the physiochemical properties and biological activities of Gangwon-do endemic Makjang (MJ) products (12 types). The pH levels of all samples were in the range of 4.43 to 5.69, and MJ5 showed the highest pH (5.69). The salinities of all samples ranged from 11.1% to 16.9%. Hunter color values for L (lightness), a (redness), and b (yellowness) ranged from 26.2 to 36.9, 3.9 to 11.5, and 6.5 to 16.6, respectively. The amino nitrogen content of MJ2 was highest, whereas the total content of free amino acids of MJ11 (4,657.7 mg%) was highest. Total fatty acid contents of all samples ranged from 1,598.6 mg% to 2,874.4 mg%, with MJ10 showing the highest fatty acid content. The content of total polyphenolic compounds ranged from 401.48 to $746.67{\mu}g$ tannic acid equivalent/mL, with MJ11 showing the highest content. The 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiozoline-6-sulfonic acid) radical scavenging effects of MJ11, MJ8, and MJ4 were 51.30% and 82.5%, 41.29% and 67.0%, and 49.88% and 87.7%, respectively. MJ12 showed the strongest growth inhibitory effect on lung cancer A549 cells, whereas MJ5 showed the strongest growth inhibitory effect on AGS gastric cancer cell and MCF-7 breast cancer cell. MJ7 showed greater lipid accumulation inhibitory activity in HepG2 cells than the others. ACE inhibitory activity of MJ11 was the highest among the samples.