DOI QR코드

DOI QR Code

자동차 센서와 자동차 간 통신의 융합 측위 알고리듬

A Fusion of Vehicle Sensors and Inter-Vehicle Communications for Vehicular Localizations

  • 투고 : 2012.05.03
  • 심사 : 2012.06.25
  • 발행 : 2012.07.31

초록

자동차 측위 기술은 충돌 경고, 적응형 주행 제어 등의 다양한 지능형 자동차 서비스들을 제공하는데 있어 필수적인 기술이다. 본 논문에서는 자동차에 장착된 레이더 등의 센서로부터 수신하는 주변 자동차들의 상대적 위치 정보와 자동차 간 통신을 통해 수신하는 주변 자동차들의 GPS 측위값을 융합하여 자기 자동차의 측위 정확도를 향상하는 융합 측위 알고리듬을 제시한다. 제안하는 알고리듬은 탐욕적 측위 데이터 매핑 알고리듬과 융합 측위보정 알고리듬으로 구성된다. 전자는 거리를 기반으로 GPS 측위값과 센싱 측위값을 대응시키고, 후자는 대수 법칙에 기반하여 자기 자동차의 GPS 측위값을 보정한다. 시뮬레이션을 통해 융합 측위 알고리듬의 RMS 측위 정확도가 기존의 GPS 기반 RMS 측위 정확도에 비해 종방향으로 30 % 이상, 횡방향으로 60 % 이상 향상할 수 있음을 보였다.

A vehicle localization technology is an essential component to support many smart-vehicle applications, e.g. collision warning, adaptive cruise control, and so on. In this paper, we present a new vehicle localization algorithm based on the fusion of the sensing estimates from the local sensors and the GPS estimates from the inter-vehicle communications. The proposed algorithm consists of the greedy location data mapping algorithm and the position refinement algorithm. The former maps a sensing estimate with a GPS estimate based on the distance between themselves, and then the latter refines the GPS estimate of the subject vehicle based on the law of large numbers. From the numerical results, we demonstrate that the accuracy of the proposed algorithm outperforms that of the existing GPS estimates by at least 30 % in the longitudinal direction and by at least 60% in the lateral direction.

키워드

참고문헌

  1. R. Rajamani, Vehicle Dynamics and Control, 2nd Ed., Springer, 2012.
  2. H. Moustafa and Y. Zhang, Vehicular Networks, Techniques, Standards, and Applications, CRC Press, 2009.
  3. The CAMP Vehicle Safety Communications Consortium, "Vehicle safety communications project, task 3 final report," DOT HS 809 859, March 2005.
  4. IEEE 802.11 Working Group, "IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks - specific requirements; Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications; Amendment 6: Wireless access in vehicular environments," IEEE Std 802.11p-2010, July 2010.
  5. S. E. Shladover and S.-K. Tan, "Analysis of vehicle positioning accuracy requirements for communication-based cooperative collicion warning," J. of Intelligent Transport Systems, vol. 10, no. 3, pp. 131-140, 2006. https://doi.org/10.1080/15472450600793610
  6. M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration, Wiley, 2000.
  7. E. Abbott and D. Powell, "Land-vehicle navigation using GPS," Proc. of the IEEE, Aug. 2002.
  8. G. M. Djuknic and R. E. Richton, "Geolocation and assisted GPS," IEEE Computer, vol. 34, no. 2, pp. 123-125, Feb. 2001. https://doi.org/10.1109/2.901174
  9. S. Rezaei and R. Sengupta, "Kalman filter-based integration of DGPS and vehicle sensors for localization," IEEE Trans. Control Syst. Techno., vol. 15, no. 6, pp. 1080-1088, Nov. 2007. https://doi.org/10.1109/TCST.2006.886439
  10. S. Rezaei, R. Sengupta, H. Krishnan, X. Guan, and R. Bhatia, "Tracking the position of neighboring vehicles using wireless communications," Elsevier Transportation Research, Part. C, no. 18, May 2009.
  11. T.-S. Dao, K. Y. K. Leung, C. M. Clark, and J. P. Huissoon, "Markov-based lane positioning using intervehicle communication", IEEE Trans. Intell. Transp. Syst., vol. 8, no. 4, pp. 641-650, Dec. 2007. https://doi.org/10.1109/TITS.2007.908574
  12. D. B. West, Introduction to Graph Theory, Prentice Hall, 2000.
  13. L. H. Eriksson and B.-O. As, "Automotive radar for adaptive cruise control and collision warning/ avoidance," IEE Radar 97, pp. 16-20, Nov. 1997.
  14. B.-E. Tullsson and B.-O. As, "Alternative applications for a 77 GHz automotive radar," IEEE Radar Conf., pp. 273-277, May 2000.
  15. SUMO available: http://sumo.sourceforge.net