DOI QR코드

DOI QR Code

카드뮴 오염 현미 섭취에 의한 랫드의 체내 중금속 축적

Effect of Cadmium-contaminated Brown Rice Diet on Accumulation of Heavy Metal in Rats

  • 김재영 (식품의약품안전청 식품의약품안전평가원 식품위해평가부 화학물질과) ;
  • 임효빈 (원광대학교 의과대학병원) ;
  • 김성조 (원광대학교 식품.환경학과) ;
  • 백승화 (충북도립대학교 바이오식품생명과학과)
  • Kim, Jae-Young (Food Chemical Residues Division, Department of Food Safety Evaluation, National Institute of Food & Drug Safety Evaluation, Korea Food & Drug Administration) ;
  • Im, Hyo-Bin (School of Medicine & Hospital, Wonwang University) ;
  • Kim, Seong-Jo (Department of Food and Environmental Sciences, Wonkwang University) ;
  • Baek, Seung-Hwa (Department of Biofood Science and Biotechnology, Chungbuk Provincial University)
  • 투고 : 2012.03.31
  • 심사 : 2012.05.13
  • 발행 : 2012.06.30

초록

본 연구는 중금속이 함유된 식이를 섭취 시 생체 내에서의 중금속 동태 및 함량을 구명하고자 Cd 오염 지역에서 생산된 현미를 첨가한 식이로 12주간 흰쥐를 사육하여 성장 특성과 혈액, 간 및 신장 조직의 Cd, Zn 및 Cu의 함량을 분석한 결과는 다음과 같다. 식이에 따른 일일 증가체중은 BR 및 PBR 100% 식이 군에서 0.22-0.26 g/day이었고, FE식이 군은 1.08-1.26 g/day로 식이 원에 따른 체중변화 차이가 뚜렷하였다. 식이 내 중금속 일일 섭취량은 BR+PBR 50% 및 PBR 100% 군은 10.77 및 22.36 ${\mu}g/rat$ 이고, FE+PBR 50% 군은 8.83 ${\mu}g/rat$로 식이 중 Cd 농도에 따라 일일 Cd 섭취량이 증가 되었다. 12주간 섭취한 중금속은 전체적으로 식이 중 Cd 함량이 높아지면 이들 총 섭취량도 증가되었다. BR+PBR 50% 군 및 FE+PBR 50% 군의 간과 신장의 무게는 FE 식이 군에서 2.64배 및 2.27배 높은 무게를 나타냈다. 혈액 중 Cd 함량은 BR 식이 섭취량이 많을수록 증가되었고, Zn 및 Cu 함량은 감소되었다. 동일 Cd 농도 식이 군에서 FE+PBR 50% 군은 BR+PBR 50%로 조제한 식이군보다 혈액 중 Cd 함량이 1.27배 높았다. 간에서 BR, BR+PBR 50% 및 PBR 100% 식이 군은 Cd 농도가 높으면 간 중 Cd 함량이 증가되는 현상이 뚜렷하였다. 동일 수준 농도에서 BR+PBR 50% 및 FE+PBR 50%의 Cd 축적은 BR 식이가 높았다. 신장 중 BR, BR+PBR 50% 및 PBR 100% 식이 군에서 Cd 함량의 축적이 높아지면 신장 중 Zn 및 Cu 함량이 증가하였고, 식이군의 Cd 농도가 같은 수준에서 FE와 BR 첨가 차이는 BR 첨가식이 군이 FE로 조제한 식이군보다 3.11배가 높은 Cd 함량을 나타냈다. 이와 같은 결과는 오염된 식이의 섭취량과 Cd 농도 수준에 의존한 결과로서 Zn 및 Cu 함량과도 깊은 관계가 있음을 확인하였다.

Movement and accumulation of cadmium in male Sprague-Dawley rats, fed with brown rice from nearby Janghang smeltery area were investigated. The rat fed with five different cadmium level diets made with Cd-polluted during 12 weeks. The brown rice-polluted with 0.87 ppm Cd (PBR) was sampled from products in the Janghang smeltery area. Diets of brown rice group were brown rice (BR, 0.002 ppm Cd), each 50% of BR and PBR (BR+PBR 50%, 0.44 ppm Cd) and PBR (PBR 100%, 0.87 ppm Cd). To compare with BR+PBR 50%, the another group diet composed the feed (FE, 0.002 Cd ppm) and each 50% of FE and PBR (FE+PBR 50%, 0.44 ppm Cd). Accumulation of Cd, Zn and Cu in blood, liver and kidney rats was measured by GF-AAS. The weight gain in BR groups and FE groups were different 0.22-0.26 and 1.08-1.26 g/day, respectively. Daily intake cadmium was 10.77 and 22.36 ${\mu}g/rat$ in BR+PBR 50% and PBR 100%, and 8.83 ${\mu}g/rat$ in FE+PBR 50%. Cadmium contents in diets were higher, and total intake of the heavy metals was more increased on the whole. Weights of liver and kidney in FE+PBR 50% group was 2.64 and 2.27 folds higher than those in BR+PBR 50% group. Cadmium contents in blood were increased with intake of BR diet, but Zn and Cu were decreased with them. In the diet groups with the same Cd concentration, Cd content of FE+PBR 50% was higher 1.27 times than that of BR+PBR 50%. In the diet group of BR, BR+PBR 50%, and PBR 100%, the increase of Cd concentration was significantly different to the increase of Cd content in the livers. In the same condition of Cd concentration, Cd contents were higher in the BR+PBR 50% group. In the diet groups of BR, BR+PBR 50%, and PBR 100%, the increase of Cd content in the kidneys led to the increase of Zn and Cu contents. In the same condition of Cd concentration, the diet group with the addition of BR was shown to be 3.11 times higher than with the addition of FE. In view of the results so far achieved, It was closely related with Cd, Zn, and Cu content.

키워드

참고문헌

  1. Ratcliffe, JM.: 1981. Lead in man and the environment, Ellis Horwood Press, New York, USA, pp. 34-40 (1986).
  2. Chun, KJ., and Kim, BH.: Changes of heavy metal concentration in rat's tissues and urine after Cd-administration. Yakhak hoeji, 40, 501-506 (1996).
  3. Oh, SH., Ahn, YM., Shin, KS., and Kim, WJ.: Immunocytochemistry of metallothionein expression in developing rat liver. Korean J. Electron Microscopy., 34, 171-178 (2004).
  4. Park, JR., Kim, MH., and Lee, YS.: Effects of chitosan on the lead level and histological changes in rats exposed to various levels of lead. Korean J. Nutr., 38, 48-55 (2005).
  5. Andersen, O., and Nielsen, JB.: Effects of diethyldithiocar-bamate on the toxicokinetics of cadmium chloride in mice. Toxicology, 55, 1-14 (1989). https://doi.org/10.1016/0300-483X(89)90170-4
  6. Klaassen, CD., Liu, J., Choudhuri, S.: Metallothionein: An intracellular protein to protect against cadmium toxicity. Annu. Rev. Pharmacol. Toxicol., 39, 267-294 (1999). https://doi.org/10.1146/annurev.pharmtox.39.1.267
  7. Claverie, C., Corbella, R., Martín, D., and Díaz, C.: Protective effects of zinc on cadmium toxicity in rodents. Biol. Trace Elem. Res., 75, 1-9 (2000). https://doi.org/10.1385/BTER:75:1-3:1
  8. Patrick, L.: Toxic metals and antioxidants. Part II. The role of antioxidants in arsenic and cadmium toxicity. Altem. Med. Rev., 8, 106-128 (2003).
  9. Paek, SM., and Lee, IS.: A study on bioaccumulation of heavy metals in Mussels (Mytilus edulis) from the Onsan coastal zone. Korean J. Ecol., 21, 217-224 (1998).
  10. Lee, IS., and Kim, EJ.: Distribution of heavy metals in sediments, seawater and oyster (Crassostrea gigas) in the Jinha bay. Korean J. Ecol., 23, 59-64 (2000).
  11. Gross, SB., Yeager, DW., and Middendorf, MS.: Cadmium in liver, kidney, and hair of humans, fetal through old age. J. Toxicol. Environ. Health, Part A: Current Issues 2, 153-167 (1976). https://doi.org/10.1080/15287397609529423
  12. Friberg, L.: Health hazards in the manufacture of alkaline accumulators with special reference to chronic cadmium poisoning; A clinical and experimental study. Acta Med. Scand., 138(Suppl. 240), 1-124 (1950).
  13. Kello, D., Dekanic, D., and Kostial, K.: Influence of sex dietary calcium on intestinal cadmium absorption in rats. Arch. Environ. Health, 34, 30-33 (1979). https://doi.org/10.1080/00039896.1979.10667363
  14. Muller, L., and Ohnesorge, FK.: Different response of liver parenchymal cells from starved and fed rats to cadmium. Toxicology, 25, 141-150 (1982). https://doi.org/10.1016/0300-483X(82)90025-7
  15. Wong, KL., and Klaassen, CD.: Age difference in the susceptibility to cadmium induced testicular damage in rats. Toxicol. Appl. Pharmacol., 55, 456-466 (1980). https://doi.org/10.1016/0041-008X(80)90047-2
  16. Cherian, MG., Goyer, RA., and Valberg, LS.: Gastrointestinal absorption and organ distribution of oral cadmium chloride and cadmium-metallothionein in mice. J. Toxicol. Environ. Health. Part A: Current Issues 4, 861-868 (1978). https://doi.org/10.1080/15287397809529707
  17. Zenick, H., Hastings, L., Goldsmith, M., and Niewenhuis, RJ.: Chronic cadmium exposure: Relation to male reproductive toxicity and subsequent fetal outcome. J. Toxicol. Environ. Health, Part A: Current Issues 9, 377-387 (1982). https://doi.org/10.1080/15287398209530171
  18. Ganji, TJ., and Page, AL.: Rapid acid disolution of plant tissue for cadmium determination by atomic absorption spectrophotometry. At. Absorpt. Newsl., 13, 131-134 (1974).
  19. Siewicki, TC., Balthrop, JE., and Sydlowski, JS.: Iron metabolism of mice fed low levels of physiologically bound cadmium in oyster or cadmium chloride. J. Nutr., 113, 1140-1149 (1983).
  20. Siewicki, TC., Sydlowski, JS., Van Dolah, FM., and Balthrop, JE.: Influence of dietary zinc and cadmium on iron bioavailability in mice and rats: Oyster versus salt sources. J. Nutr., 116, 281-289 (1986).
  21. Kim, US., Lee, CH., Kim, SJ., Lee, JD., Moon, KH., and Baek, SH.: Effect of the aloe arboresense added-diet on the cadmium toxicity in rat. Korean J. Food Sci. Technol., 27, 555-563 (1995).
  22. Besten, PJ., Bosma, PT., Herwig, HJ., Zandee, DI., and Voogt, PA.: Effects of cadmium on metal composition and adenylate energy charge in the sea star Asterias rubens L. Arch. Environ. Contam. Toxicol., 21, 112-117 (1991). https://doi.org/10.1007/BF01055565
  23. Suzuki, KT., Yamamura, M., Yanda, YK., and Shimizu, F.: Distribution of cadmium in heavily cadmium-accumulated rat liver cytosols: metallothionein and related cadmium-bonding proteins. Toxicol. Lett., 8, 105-114 (1981). https://doi.org/10.1016/0378-4274(81)90145-4
  24. Tandon, SK., and Tewari, PC.: Effect of co-exposure to ethanol and cadmium in rats. Bull. Environ. Contam. Toxicol., 39, 633-640 (1987). https://doi.org/10.1007/BF01698456
  25. Yasumasa, K., Terumasa, N., and Masayuki, T.: Influence of cadmium on the distribution of the essential trace elements zinc and copper in the liver and kidneys of rats. Biol. Trace Ele. Res., 14, 237-248 (1987). https://doi.org/10.1007/BF02795690
  26. Reeves, PG., Chaney, RL., Simmons, RW., and Cherian, MG.: Metallothionein induction is not involved in cadmium accumulation in the duodenum of mice and rats fed diets containing high-cadmium rice or sunflower kernels and a marginal supply of zinc, iron, and calcium. J. Nutr., 135, 99-108 (2005).
  27. Nakagawa, J., Oishi, S., Suzuki, J., Tsuchiya, Y., Ando, M., and Fujimoto, Y.: Effects of long-term ingestion of cadmiumpolluted rice or low-dose cadmium-supplemented diet on the endogenous copper and zinc balance in female rats. J. of Health Sci., 50, 92-96 (2004). https://doi.org/10.1248/jhs.50.92
  28. Suzuki, Y.: Cadmium metabolism and toxicity in rats after long-term subcutaneous administration. J. Toxicol. Environ. Health, Part A: Current Issues 6, 469-482 (1980). https://doi.org/10.1080/15287398009529866
  29. Tandon, SK., and Asokan, P.: Distribution of intratracheally administered cadmium in rats. Acta Pharmacol. Toxicol., 49, 381-383 (1981).