Abstract
This paper suggests the online method to identify normal and abnormal state of water quality on the ocean USN. To define normal of the ocean water quality, we utilize the negative selection algorithm of artificial immunity system which has self and nonself identification characteristics. To distinguish abnormal status, normal state set of the ocean water quality needs to be defined. For this purpose, we generate normal state set base on mutations of each data and mutation of the data as logical product. This mutated normal (or self) sets used to identify abnormal status of the water quality. We represent the experimental result about mutated self set with the Gaussian function. Through setting the method on the ocean sensor logger, we can monitor whether the ocean water quality is normal or abnormal state by online.
본 논문은 해양 USN 환경에서 수질환경의 온라인 정상 비정상 상태를 구분하기 위한 기법을 제안한다. 해양 수질 환경 인자의 정상 상태 집합을 정의하기 위해 정상 비정상 구분 특성을 갖는 인공면역시스템의 부정선택 알고리즘을 활용한다. 비정상 상태 구분을 위해 해양 USN 환경에서 센서를 통해 수집된 해양 수질 환경의 정상 집합 생성이 필요하다. 이를 위해 각 측정 인자에 대한 단위 데이터의 돌연변이와 해양 수질 상태를 각 요소의 논리곱적 관점에서 상태 데이터의 돌연변이를 기반으로 정상 집합을 생성한다. 생성된 정상 집합을 활용하여 비정상 상태를 구분한다. 이 과정을 가우시안 함수를 기반으로 돌연변이 된 정상 집합에 대하여 모의 실험을 제시한다. 이렇게 제안된 기법을 해양 수질 센서 로거단에 설치함으로써, 온라인으로 해양 수질 환경의 정상 인자를 모니터링 할 수 있다.