DOI QR코드

DOI QR Code

제주도 현무암에 산출되는 함수광물(금운모와 각섬석): 모달교대작용의 증거

Hydrous Minerals (Phlogopite and Amphibole) from Basaltic Rocks, Jeju Island: Evidences for Modal Metasomatism

  • 허서영 (부산대학교 지구환경시스템학부) ;
  • 양경희 (부산대학교 지구환경시스템학부) ;
  • 정훈영 (부산대학교 지구환경시스템학부)
  • Heo, Seo-Young (Dept. of Geological Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Yang, Kyoung-Hee (Dept. of Geological Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Jeong, Hoon-Young (Dept. of Geological Sciences, Division of Earth Environmental System, Pusan National University)
  • 투고 : 2012.01.26
  • 심사 : 2012.03.15
  • 발행 : 2012.03.31

초록

제주도의 초염기성-염기성 암편을 포획하고 있는 현무암은 조직적으로 일반 반정과 뚜렷하게 구별되는 금운모와 커슈타이트 결정을 산출하고 있다. 금운모와 커슈타이트는 모암인 현무암에서는 비교적 조립질 (2-10 mm)로 산출되며, 금운모는 초염기성 맨틀포획암에서, 커슈타이트는 염기성 반려암질 포획암에서 세립의 입자(1 mm 이하)로 간극을 채우거나, 미세맥으로 혹은 코로나로 뚜렷한 이차조직으로 산출된다. 금운모는 $TiO_2$(4.1-6.9 wt%)와 F(2.8-4.6wt%)가 풍부하고, mg#[=100Mg/(Mg+$Fe^t$) in mols, where $Fe^t$ is total iron]는 88-80으로 매우 높다. 커슈타이트는 높은 $TiO_2$(5.6-6.11 wt%)와 비교적 낮은 mg#(68-64)를 보인다. 금운모와 커슈타이트는 서로 관련된 것은 아니며, 금운모의 형성은 상부맨틀에서 먼저 일어난 사건이고 커슈타이트의 형성은 하부지각에서 나중에 일어난 사건으로 해석된다. 이들 결정들 사이의 mg#와 조직적 특성은 제주도 암석권에서 맨틀의 심부일수록 금운모 부화작용을 경험하였으며, 천부일수록 각섬석 부화작용이 있었음을 지시하고 있다. 현무암에 금운모와 각섬석이 산출된다는 것은 제주도 상부맨틀/하부지각에 K-, Ti-를 함유한 휘발성 성분이 풍부한 멜트/유체가 이동하고 있다는 것에 대한 직접적인 증거가 되며, 제주도 하부 상부맨틀/하부지각도 다양한 모달 교대작용을 경험하였음을 의미한다.

Phlogopite and kaersutite, showing distinctively different textural characteristics compared to the common phenocrysts, are observed in alkali basalt from Jeju Island. They occur as large crystals (2-10 mm) in host basalts, whereas fine-grained phlogopite and kaersutite occur in ultramafic mantle xenoliths and mafic gabbroic xenoliths, respectively, as an interstitial and microvein phases, or in corona textures (<1 mm). This textural characteristics of fine-grained grains clearly indicates secondary in origin. Phlogopite contains high $TiO_2$(4.1-6.9 wt%) and F(2.8-4.6 wt%) and relatively high mg#[=100Mg/(Mg+$Fe^t$) in mols, where $Fe^t$ is total iron](88-80), whereas kaersutite has high $TiO_2$(5.6-6.11 wt%) and much lower mg#s(68-64). Our textural observations and the geochemical character of these hydrous minerals suggest that they were unrelated to each other and mica formation happened early in the upper mantle before the mantle xenoliths had been trapped. In contrast, kaersutite formation has happened later, probably during the late stage of crystallization as intracrustal processes. The presence of phlogopite and kaersutitic amphibole is a direct evidence for K-, Ti-, F- and $H_2O$-bearing fluid/melt percolation in the lithosphere beneath Jeju Island, indicating that they are product of interaction between host rock/peridotite/fluid-melt. Thus, the upper mantle/lower crust beneath Jeju Island are metasomatized to various extents, characterized by a change in major metasomatic hydrous minerals from phlogopite to amphibole with decreasing depth.

키워드

참고문헌

  1. 고기원, 박윤석, 박언배, 2004, 제주도 동부지역의 지하 지질분포와 $^{40}Ar-^{39}Ar$ 연대. 2004 대한지질학회 춘계학술답사, 대한지질학회, 29-50.
  2. 박기화, 2004, 제주도 형성사, 2004, 대한지질학회 춘계학술답사, 대한지질학회, 1.
  3. 박준범, 권성택, 1996, 제주도의 솔리아이트 화산활동. 암석학회지, 5, 66-83.
  4. 박준범, 박기화, 조등룡, 고기원, 1999, 제주도 제 4기 화산암류의 암석화학적 분류. 지질학회지, 35, 253-264.
  5. 엄영보, 양경희, 남복현, 황병훈, 김진섭, 2007, 제주도 알칼리 현무암에 포획된 반려암질 포획암. 한국광물학회지, 20, 103-114.
  6. 원종관, 길영우, 이문원, 1998, 제주도 동북사면에 분포하는 화산암류의 암석학적 연구. 지구과학회지, 19, 329- 342.
  7. 유재은, 김선웅, 양경희, 2011, 제주도 맨틀포획암내의 실리카 부화작용: 모달 교대작용의 증거. 암석학회지, 20, 61-75. https://doi.org/10.7854/JPSK.2011.20.1.061
  8. 윤성효, 고정선, 박정미, 2002, 제주도 남동부 태흥리 용암에 대한 암석학적 연구. 암석학회지, 11, 17-29.
  9. 윤성효, 고정선, 안지영, 1998, 제주도 동부 알칼리 현무암내 스피넬-레졸라이트 포획체의 연구. 자원환경지질학회지, 31, 447-458.
  10. 이문원, 원종관, 이동영, 박계헌, 김문섭, 1994, 제주도 화산암류의 화산층서 및 암석학적 연구. 지질학회지, 30, 521-541.
  11. 장광화, 박준범, 권성택, 1999, 제주 화산도의 조면암류에 대한 암석기재 및 광물화학. 지질학회지, 35, 15-34.
  12. 진명식, 2004, 한국의 화성활동, 한국암석학회 추계학술심포지엄 논문집, 한국암석학회, 103-104.
  13. Arai, S., Ishimaru, S. and Okrugin, V.M., 2003, Metasomatized harzburgite xenoliths from Avacha volcano as fragments of mantle wedge of the Kamchatka arc: an implication for the metasomatic agent. Island Arc, 12, 233-246. https://doi.org/10.1046/j.1440-1738.2003.00392.x
  14. Bali, E., Zajacz, Z., Kovcs, I., Szab, Cs., Halter, W., Vaselli, O., Trk, K. and Bodnar, R.J., 2008, A quartz-bearing orthopyroxene-rich websterite xenolith from the Pannonian Basin, Western Hungary: Evidence for release of quartz-saturated melt from a subducted slab. Journal of Petrology, 49, 421-439. https://doi.org/10.1093/petrology/egm086
  15. Choi, S.H., Lee, J.I., Park, C.H. and Moutte, J., 2002, Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea. Island Arc, 11, 221-235. https://doi.org/10.1046/j.1440-1738.2002.00367.x
  16. Coltorti, M. and Gregoire, M., 2008, Metasomatism in oceanic and continental lithospheric mantle: introduction. In: COLTORTI, M. & GRE'GOIRE, M. (eds) Metasomatism in Oceanic and Continental Lithospheric Mantle. Geological Society, London, Special Publications, 293, 1-9. https://doi.org/10.1144/SP293.1
  17. Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979, The interpretation of igneous rocks. Allen and Unwin, London, Ch.2.
  18. Ertan, I.E. and Leeman, W.P., 1996, Metasomatism of Cascades subarc mantle: evidence from a rare phlogopite orthopyroxenite xenolith. Geology, 24, 451-454. https://doi.org/10.1130/0091-7613(1996)024<0451:MOCSME>2.3.CO;2
  19. Franz, L., Becker, K.P., Kramer, W. and Herzig, P.M., 2002, Metasomatic mantle xenoliths from the Bismarck microplate (Papua New Guinea): Thermal evolution, geochemistry and extent of slab-induced metasomatism. Journal of Petrology, 43, 315-343. https://doi.org/10.1093/petrology/43.2.315
  20. Frey, F.A. and Prinz, M., 1978, Ultramafic inclusions from San Carlos, Arizona; petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters, 38, 129-178. https://doi.org/10.1016/0012-821X(78)90130-9
  21. Hamdy, A.M., Park, P.H., Lim, H.C. and Park, K.D., 2004, Present-day relative displacements between the Jeju Island and the Korean peninsula as seen from GPS observations. Earth Planets Space, 56, 927-931. https://doi.org/10.1186/BF03352540
  22. Kelemen, P.B., Hart, S.R. and Bernstein, S., 1998, Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters, 164, 387- 406. https://doi.org/10.1016/S0012-821X(98)00233-7
  23. Kim, K.H., Nagao, K., Suzuki, K., Tanaka, T. and Park, E.J., 2003, Evidences of the presence of old continental basement in Jeju volcanic Island, South Korea, revealed by Radiometric ages and Nd-Sr isotopes of granitic rocks. Journal of Geochemical Exploration, 36, 421-441.
  24. Kubo, A. and Fukuyama, E., 2003, Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes. Earth and Planetary Science Letters, 210, 305-316. https://doi.org/10.1016/S0012-821X(03)00132-8
  25. Lee, M.W., 1982, Petrology and geochemistry of Jeju volcanic island, Korea. The Science Report of the Tohoku Imperial University Section Series III, 15, 177-256.
  26. McBirney, R.B., 1993, Igneous petrology(2nd ed). Jones and Bartlett Publishers, Inc., Boston, 508p.
  27. Menzies, M.A., Rogers, N., Tindle, A. and Hawkesworth, C.J., 1987, Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere--lithosphere interaction. In: Menzies, M.A. & Hawkesworth, C.J. (eds) Mantle Metasomatism. Academic Press, New York, 313-361p.
  28. Miyashiro, A., 1978, Nature of alkalic volcanic rock series. Contribution to Mineralogy and Petrology, 66, 91-104. https://doi.org/10.1007/BF00376089
  29. Nakamura, E., Campbell, I.H., Mcclloch, M.T. and Sun, S.S., 1989, Chemical geodynamics in a back arc region around the Sea of Japan: implications for the genesis of alkaline basalts in Japan, Korea and China. J. Geophy. Res., 94, 4634-4654. https://doi.org/10.1029/JB094iB04p04634
  30. Smith, D., Riter, J.C.A. and Mertzman, S.A., 1999, Erratum to "water-rock interactions, orthopyroxene growth and Sienrichment in the mantle: evidence in xenoliths from the Colorado Plateau, southwestern United States". Earth and Planetary Science Letters, 167, 347-356. https://doi.org/10.1016/S0012-821X(99)00027-8
  31. Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. & Norry, M.J. (eds) Magmatism in the Oceanic Basins. Geological Society, London, Special Publications, 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  32. Szab, Cs., Falus, Gy., Zajacz, Z., Kovacs, I. and Bali, E., 2004, Composition and evolution of lithosphere beneath the Carpathian-Pannonian Region: a review. Tectonophysics, 393, 119-137. https://doi.org/10.1016/j.tecto.2004.07.031
  33. Tatsumi, Y., Shukuno, H., Yoshikawa, M., Chang, Q., Sato, K. and Lee, M.W., 2005, The petrology and geochemistry of volcanic rocks on Jeju Island: Plume magmatism along the Asian continental margin. Journal of Petrology, 46, 523-553.
  34. Wilson, M., 1989, Igneous petrogenesis. Unwin Hyman, London, 466p.
  35. Winter, J.D., 2001, Igneous and metamorphic petrology. Prentice Hall, New Jersey, 697p.
  36. Yang, K., Hidas, K., Falus, G., Szab, C., Nam, B., Kovcs, I. and Hwang, B., 2010, Relation between mantle shear zone deformation and metasomatism in spinel peridotite xenoliths of Jeju Island (South Korea): Evidence from olivine CPO and trace elements. J. Geodynamics, 50, 424-440. https://doi.org/10.1016/j.jog.2010.05.005
  37. Yang, K., Arai, S., Yu, J., Yun, S., Kim, J., Hwang, J., 2012, Gabbroic xenoliths and megacrysts in the Pleisto- Holocene alkali basalts from Jeju Island, South Korea: the implications for metasomatism of the lower continental crust. Lithos, DOI: 10.1016/j.lithos.2012.03.006 (in press).

피인용 문헌

  1. Phlogopite-Bearing Orthopyroxenite in Andong Ultramafic Complex vol.25, pp.4, 2012, https://doi.org/10.9727/jmsk.2012.25.4.249
  2. Mantle-derived CO2-fluid Inclusions in Peridotite Xenoliths from the Alkali Basalt, Jeju Island, South Korea vol.25, pp.1, 2016, https://doi.org/10.7854/JPSK.2016.25.1.39
  3. Composition and Evolution of Lithosphere Beneath the Jeju Island Region (I): A Review vol.25, pp.3, 2016, https://doi.org/10.7854/JPSK.2016.25.3.261
  4. Silica- and LREE-enriched spinel peridotite xenoliths from the Quaternary intraplate alkali basalt, Jeju Island, South Korea: Old subarc fragments? vol.208-209, 2014, https://doi.org/10.1016/j.lithos.2014.09.003