DOI QR코드

DOI QR Code

조선에서 대량 맞춤화의 영향

Impact of Employing Mass Customization in Shipbuilding

  • 투고 : 2012.01.30
  • 심사 : 2012.03.26
  • 발행 : 2012.03.31

초록

대량 맞춤화 생산에서 목표 중 하나는 생산 비용이나 제품 인도 스케줄을 크게 변화시키지 않고 특정 고객의 요구를 만족시키는 생산을 달성하는 것이다. 조선 항공과 같은 대형 조립-생산 산업에서의 맞춤화는 이에 따른 부품이나 또는 부품의 중간조립품인 모듈의 변화를 가져오게 된다. 본 연구는 조선 분야에서의 사례 연구를 통하여 고객의 맞춤화에 따른 생산 스케줄의 변화가 선박 인도에 미치는 영향을 분석하고자 한다. 대단위 조립 생산에서 대량 맞춤화는 맞춤화의 요구 수준에 따라 엔지니어링 및 조립-생산 시간이 변화한다. 본 연구는 조선 산업에서 처음으로 대량 맞춤화를 수행하는 생산 방안을 제안하고 이론적조선 생산 과정을 간략히 기술한 시뮬레이션 모형을 통하여 다양한 수준에서의 대량 맞춤화가 선박 인도 일정에 어떠한 영향을 미치는가를 평가하였다.

One of the goals of mass customization is to permit changes in the product to meet specific customer requirements without substantially impacting the cost or delivery schedule. In large assembly manufacturing industries, such as shipbuilding and commercial airplane production, customization takes place by changing components and/or modules, sometimes called interim products. Using shipbuilding as a case study, it is possible to study the impact of such changes using mass customization principles on the schedule. In large assembly manufacturing, mass customization changes would cause changes in engineering time and production time, based on the amount of change required by the customization. This work first proposes a structure for implementing mass customization in shipbuilding and then uses simulation of a simplified, theoretical shipbuilding process to evaluate the impacts of various levels of change on delivery performance.

키워드

참고문헌

  1. Bunch, H., "Construction Planning and Manpower Schedules for the Single-Screw, Multi-Purpose Mobilization Ship, PD214 in Cooperation with Avondale Shipyard, Inc., New Orleans, Louisiana", Technical Report, Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor. 1995.
  2. Burnett, G., Finke, D., Medeiros, D. and Traband, M., "Automating the Development of Shipyard Manufacturing Models", Proceedings of the 2008 Winter Simulation Conference, pp. 1761-1767, 2008.
  3. He, D. W. and A. Kusiak, "Design an Assembly Line for Modular Products", Computers and Industrial Engineering, Vol. 34, No. 1, pp. 37-52, 1998. https://doi.org/10.1016/S0360-8352(97)00149-6
  4. Hyde, W.F., Improving Productivity by Classification and Coding and Data Base Standardization, Marcel Dekker, Inc., New York, 1981.
  5. Lu, R. F., Asynchronous Stochastic Learning Curve Effects in a Large Scale Production System, Ph.D. Dissertation, Department of Industrial Engineering, University of Washington, 2008.
  6. NSRP, Design for Production Manual, 1998.
  7. NSRP, Project 99-21 Develop and Implement World Class U.S. Material Standards and Parametric Design Rules to Support Commercial and Naval Auxiliary Ship Construction, 2003.
  8. Pritsker, A. and O'Reilly, J, Simulation with Visual SLAM and AweSim, John Wiley and Sons, New York, 2008.
  9. Softley, J. and Schiller, T., "An Approach to Advanced Ship Design Using Parametric Design Templates", SNAME Transactions, Vol. 110, p. 255, 2002.
  10. Storch, R. L., Lim, S. and Kwon, C., "Impact of Customization on Delivery Schedule", Journal of Ship Production and Design, Vol. 27, No. 4, pp. 186-193, 2011. https://doi.org/10.5957/JSPD.27.4.110023
  11. Wright, T. P., "Factors Affecting the Cost of Airplanes", Journal of Aeronautical Science, February: pp. 124-125, 1936.