References
- Korea Food & Drug Administration. (2005) The Korean Pharmacopeia. 8th ed., pp. 1455-1456. Shinil books, Seoul, Korea.
- Son, H. S., H. S. Kim, T. B. Kwon, and J. S. Ju (1992) Isolation, purification and hypotensive effect of bioflavonoid in citrus sinensis. J. Kor. Soc. Food Nutr. 21: 136-142.
- Laura, B. (1998) Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56: 317-333.
- Hyon, J. S., S. M. Kang, S. Mahinda, W. J. Koh, T. S. Yang, M. C. Oh, C. K. Oh, Y. J. Jeon, and S. H. Kim (2010) Antioxidative activities of extracts from dried Citrus sunki and C. unshiu peels. J. Kor. Soc. Food Sci. Nutr. 39: 1-7. https://doi.org/10.3746/jkfn.2010.39.1.001
- Kuhnan, J. (1976) The flavonoids, A class of semi-essential food components: their role in human nutrition. World Rev. Nutr. Diet. 24: 117-191.
- Hertog, M. G. L., E. J. M. Feskens, P. C. H. Hollman, M. B. Katan, and D. Kromhout (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen elderly study. Lancet. 342: 1007-1011. https://doi.org/10.1016/0140-6736(93)92876-U
- Garg, A., S. Garg, L. J. Zaneveld, and A. K. Singla (2001) Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother. Res. 15: 655-669. https://doi.org/10.1002/ptr.1074
- Garcia, B. O., J. Castillo, F. R. Marin, A. Ortuno, and J. A. Del Rio (1997) Uses and properties of citrus flavonoids. J. Agric. Food Chem. 45: 4505-4515. https://doi.org/10.1021/jf970373s
- Erlund, I. (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 24: 851-74. https://doi.org/10.1016/j.nutres.2004.07.005
- Elisa, T., L. G. Maurizio, G. Santo, D. M. Danila, and G. Marco (2007) Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 104: 466-479. https://doi.org/10.1016/j.foodchem.2006.11.054
- Ameer, B., R. A. Weintraub, J. V. Johnson, R. A. Yost, and R. L. Rouseff (1995) Flavanone absorption after naringin, hesperidin, and citrus administration. Clin. Pharmacol. Ther. 60: 34-40.
- Ross, J. A. and C. M. Kasum (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22: 19-34. https://doi.org/10.1146/annurev.nutr.22.111401.144957
- Kanaze, F. I., M. I. Bounartzi, M. Georgarakis, and I. Niopas (2007) Pharmaco kinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur. J. Clin. Nutr. 61: 472-477. https://doi.org/10.1038/sj.ejcn.1602543
- Song, E. Y., Y. H. Choi, K. H. Kang, and J. S. Koh (1998) Free sugar, organic acid, hesperidin, naringin and inorganic elements changes of Cheju fruits according to harvest date. Kor. J. Food Sci. Technol. 30: 306-312.
- Rhyu, M. R., E. Y. Kim, I. Y. Bae, and Y. K. Park (2002) Contents of naringin, hesperidin and neohesperidin in premature Korean citrus fruits. Kor. J. Food Sci. Technol. 34: 132-135.
-
Koh, G. P., J. T. Woo, D. H. Lee, S. J. Oh, S. W. Kim, J. W. Kim, Y. S. Kim, and D. B. Park (2007) Mechanism of 2-Deoxy-D-ribose-induced damage in pancreatic
${\beta}$ -cells. J. Kor. Diabetes 31: 105-112. https://doi.org/10.4093/jkda.2007.31.2.105 - Robertson R. P., J. Harmon, P. O. Tran, Y. Tanaka, and H. Takahashi (2003) Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52: 581-587. https://doi.org/10.2337/diabetes.52.3.581
- Robertson, R. P. (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem. 279: 42351-42354. https://doi.org/10.1074/jbc.R400019200
-
Leite, R. S. R., H. F. Alves-Prado, H. Cabral, F. C. Pagnocca, E. Gomes, and R. Silva (2008) Production and characteristics comparison of crude
${\beta}$ -glucosidase produced by microorganisms Therm cscus aurantiacus e Aureobasidium pullulans in agricultural wastes. Enzyme and Microbial Technology. 43: 391-395. https://doi.org/10.1016/j.enzmictec.2008.07.006 - Jung, H. K., Y. S. Jung, C. D. Park, C. H. Park, and J. H. Hong (2011) Inhibitory effect of citrus peel extract on lipid accumulation of 3T3-L1 adipocytes. J. Korean Soc. Appl. Biol. Chem. 54: 169-176.
- Miyake, Y., K. Yamamoto, N. Tsujihara, and T. Osawa (1998) Protective effects of lemon flavonoids on oxidative stress in diabetic rats. Lipids 33: 689-695. https://doi.org/10.1007/s11745-998-0258-y
- Shimoda, K., N. Kubota, K. Taniuchi, D. Sato, N. Nakajima, H. Hamada, and H. Hamada (2010) Biotransformation of naringin and naringenin by cultured Eucalyptus perriniana cells. Phytochemistry. 71: 201-205. https://doi.org/10.1016/j.phytochem.2009.09.035
- Youssef, F., T. Roukas, and C. G. Biliaderis (1999) Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochem. 34: 355-366. https://doi.org/10.1016/S0032-9592(98)00106-X
-
Lee, S. J., K. H. Ahn, C. S. Park, B. D. Yoon, and M. S. Kim (2009) Analysis of
${\beta}-(1{\rightarrow}3)(1{\rightarrow}6)$ -Glucan Produced by Aureobasidium pullulans IMS-822. Kor. J. Microbiol. 45: 63-68. - Li, X. L., Z. Q. Zhang, J. F. D. Dean, K. E. L. Eriksson, and L. G. Ljungdahl (1993) Purification and characterization of a new xylanase (APX-II) from the fungus Aureobasidium pullulans Y-2311-1. Appl. Environ. Microbiol. 59: 3212-3218.
- Debdulal, B. and B. Pati (2007) Optimization of tannase production by Aureobasidium pullulans DBS66. J. Microbiol. Biotechnol. 17: 1049-1053.
- Koh, G. P., K. S. Suh, S. Chon, S. J. Oh, J. T. Woo, S. W. Kim, J. W. Kim, and Y. S. Kim (2005) Elevated cAMP level attenuates 2-deoxy-D-ribose-induced oxidative damage in pancreatic-cells. Arch. Biochem. Biophys. 438: 70-79. https://doi.org/10.1016/j.abb.2005.03.018
- Cha, J. Y. and Y. S. Cho (2001) Biofunctional activities of flavonoids. J. Korean Soc. Agric. Chem. Biotechnol. 44: 122-128.
- Kang, S. H., Y. J. Lee, C. H. Lee, S. J. Kim, D. H. Lee, Y. K. Lee, and D. B. Park (2005) Physiological activities of peel of Jejuindigenous Citrus sunki Hort. Tanaka. Korean J. Food Sci. Technol. 37: 983-988.
- Kim, J. L., C. R. Bae, and Y. S. Cha (2010) Helianthus tuberosus extract has anti-diabetes effects in HIT-T15 cells. J. Kor. Soc. Food Sci. Nutr. 39: 31-35. https://doi.org/10.3746/jkfn.2010.39.1.031
- Jung, H. K., Y. S. Jung, C. D. Park, C. H. Park, and J. H. Hong (2010) Effect of the ethanol extract from citrus peels on oxidative damage in alloxan-induced HIT-T15 cell. J. Kor. Soc. Food Sci. Nutr. 39: 1102-1106. https://doi.org/10.3746/jkfn.2010.39.8.1102
- Du X. L., D. Edelstein, L. Rossetti, I. G. Fantus, H. Goldberg, F. Ziyadeh, J. Wu, and M. Brownlee (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl. Acad. Sci. USA 97: 12222-12226. https://doi.org/10.1073/pnas.97.22.12222
- Nishikawa T, D. Edelstein, X. L. Du, S. Yamagishi, T. Matsumura, Y. Kaneda, M. A. Yorek, D. Beebe, P. J. Oates, H. P. Hammes, I. Giardino, and M. Brownlee (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787-90. https://doi.org/10.1038/35008121
Cited by
- Anti-inflammatory effects of the fermentation extracts consisting of soybean, red ginseng and Citrus Unshiu Peel vol.30, pp.5, 2015, https://doi.org/10.6116/kjh.2015.30.5.59.
- Physicochemical Properties and Antioxidative Activity of Fermented Rhodiola sachalinensis and Korean Red Ginseng Mixture by Lactobacillus acidophilus vol.26, pp.3, 2013, https://doi.org/10.9799/ksfan.2013.26.3.358