DOI QR코드

DOI QR Code

Analysis of a Region Required for the Functions of Fission Yeast Nucleoporin Nup184 and Its SUMO Modification

분열효모 핵공단백질인 Nup184의 기능에 필요한 부위 분석 및 SUMO 변성

  • Chai, Ai-Ree (Basic Science Research Institute, School of Biological Science and Chemistry, College of Natural Sciences, Sungshin Women's University) ;
  • Jang, Soo-Yeon (Basic Science Research Institute, School of Biological Science and Chemistry, College of Natural Sciences, Sungshin Women's University) ;
  • Yoon, Jin-Ho (Basic Science Research Institute, School of Biological Science and Chemistry, College of Natural Sciences, Sungshin Women's University)
  • 채애리 (성신여자대학교 생명과학.화학부 및 기초과학연구소) ;
  • 장수연 (성신여자대학교 생명과학.화학부 및 기초과학연구소) ;
  • 윤진호 (성신여자대학교 생명과학.화학부 및 기초과학연구소)
  • Received : 2012.05.17
  • Accepted : 2012.06.04
  • Published : 2012.06.30

Abstract

The Nup188 protein is one of the largest evolutionally conserved nucleoprins (Nups) that compose the inner ring of nuclear pore complex (NPC). The Nup184 protein, fission yeast Schizosaccharomyces pombe ortholog of Nup188p, is required for normal growth and mRNA export in nutrient-rich medium (YES). Here, we identified a carboxyl region (482 to 1628) of Nup184 protein that was enough to complement the defects of both growth and mRNA export when the ${\Delta}nup184$ knock-out mutant was grown in YES medium. This region is also required for localization of GFP-Nup184 fusion to the nuclear periphery. In addition, we found that ORF of Nup184 (predicted 1564 amino-acid protein) registered in S. pombe GeneDB (hosted by Sanger Institute, UK) is 64 amino-acid residues shorter than that predicted by our sequence data. This carboxy-terminal region is necessary for the functions of Nup184p. We further demonstrated that Nup184 protein was conjugated with SUMO in vivo.

Nup188 단백질은 진화적으로 보존된 가장 큰 핵공단백질 중의 하나로 핵공복합체의 inner ring을 구성하는 인자이다. Nup188의 이종상동체인 분열효모 S. pombe의 Nup184 단백질은 영양분이 풍부한 완전배지(YES 배지)에서 정상적인 생장과 mRNA의 핵에서 세포질로의 이동에 필요하다. 본 연구에서는 ${\Delta}nup184$ 결실돌연변이를 YES 배지에서 배양할 때 보이는 생장지체와 mRNA export 결함을 상보하기 위해서 Nup184의 카르복시 부위(아미노산 잔기482에서 1628까지)가 필요함을 알아내었다. 또한 이 부위는 GFP-Nup184 융합단백질이 핵막에 위치하기 위해서도 필요하였다. 이 과정에서 S. pombe GeneDB (Sanger 연구소, 영국)에 등록되어 있는 Nup184의 열린읽기틀 (1564개의 아미노산 잔기로 된 단백질로 예측)이 우리가 얻은 염기서열 데이터에 비해 66개의 아미노산 잔기가 짧다는 것을 발견하였다. 이 카르복시-말단 부위는 Nup184의 기능에 반드시 필요하였다. 이외에도 Nup184 단백질이 세포 안에서 SUMO 변형되어 있음을 보였다.

Keywords

References

  1. Aitchison, J.D. and Rout, M.P. 2012. The yeast nuclear pore complex and transport through it. Genetics 190, 855-883. https://doi.org/10.1534/genetics.111.127803
  2. Aitchison, J.D., Rout, M.P., Marelli, M., Blobel, G., and Wozniak, R.W. 1995. Two novel related yeast nucleoporins Nup170p and Nup157p: complementation with the vertebrate homologue Nup155p and functional interactions with the yeast nuclear pore-membrane protein Pom152p. J. Cell Biol. 131, 1133-1148. https://doi.org/10.1083/jcb.131.5.1133
  3. Alber, F., Dokudovskaya, S., Veenhoff, L.M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B.T., and et al. 2007. Determining the architectures of macromolecular assemblies. Nature 450, 683-694. https://doi.org/10.1038/nature06404
  4. Alfa, C., Fantes, P., Hyams, J., Mcleod, M., and Warbrick, E. 1993. Experiments with Fission Yeast. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
  5. Amlacher, S., Sarges, P., Flemming, D., van Noort, V., Kunze, R., Devos, D.P., Arumugam, M., Bork, P., and Hurt, E. 2011. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146, 277-289.
  6. Caspari, T., Dahlen, M., Kanter-Smoler, G., Lindsay, H.D., Hofmann, K., Papadimitriou, K., Sunnerhagen, P., and Carr, A.M. 2000. Characterization of Schizosaccharomyces pombe Hus1: a PCNArelated protein that associates with Rad1 and Rad9. Mol. Cell. Biol. 20, 1254-1262. https://doi.org/10.1128/MCB.20.4.1254-1262.2000
  7. Cronshaw, J.M., Krutchinsky, A.N., Zhang, W., Chait, B.T., and Matunis, M.J. 2002. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol.158, 915-927. https://doi.org/10.1083/jcb.200206106
  8. Devos, D., Dokudovskaya, S., Alber, F., Williams, R., Chait, B.T., Sali, A., and Rout, M.P. 2004. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380. https://doi.org/10.1371/journal.pbio.0020380
  9. Devos, D., Dokudovskaya, S., Williams, R., Alber, F., Eswar, N., Chait, B.T., Rout, M.P., and Sali, A. 2006. Simple fold composition and modular architecture of the nuclear pore complex. Proc. Natl. Acad. Sci. USA 103, 2172-2177. https://doi.org/10.1073/pnas.0506345103
  10. Dohmen, R.J. 2004. SUMO protein modification. Biochim. Biophys. Acta 1695, 113-131. https://doi.org/10.1016/j.bbamcr.2004.09.021
  11. Fabre, E. and Hurt, E. 1997. Yeast genetics to dissect the nuclear pore complex and nucleocytoplasmic trafficking. Annu. Rev. Genet. 31, 277-313. https://doi.org/10.1146/annurev.genet.31.1.277
  12. Flemming, D., Devos, D.P., Schwarz, J., Amlacher, S., Lutzmann, M., and Hurt, E. 2012. Analysis of the yeast nucleoporin Nup188 reveals a conserved S-like structure with similarity to karyopherins. J. Struct. Biol. 177, 99-105. https://doi.org/10.1016/j.jsb.2011.11.008
  13. Geiss-Friedlander, R. and Melchior, F. 2007. Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell. Biol. 8, 947-956. https://doi.org/10.1038/nrm2293
  14. Hoelz, A., Debler, E.W., and Blobel, G. 2011. The structure of the nuclear pore complex. Annu. Rev. Biochem. 80, 613-643. https://doi.org/10.1146/annurev-biochem-060109-151030
  15. Leupold, U. 1950. Die Vererbung von Homothallie und Heterothallie bei Schizosaccharomyces pombe. C. R. Lab. Carlsberg Ser. Physiol. 24, 381-480.
  16. Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. 1997. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97-107. https://doi.org/10.1016/S0092-8674(00)81862-0
  17. Matunis, M.J., Coutavas, E., and Blobel, G. 1996. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPaseactivating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457-1470. https://doi.org/10.1083/jcb.135.6.1457
  18. Moreno, S., Klar, A., and Nurse, P. 1991. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795-823. https://doi.org/10.1016/0076-6879(91)94059-L
  19. Mukhopadhyay, D. and Dasso, M. 2007. Modification in reverse: the SUMO proteases. Trends Biochem. Sci. 32, 286-295. https://doi.org/10.1016/j.tibs.2007.05.002
  20. Nehrbass, U., Rout, M.P., Maguire, S., Blobel, G., and Wozniak, R.W. 1996. The yeast nucleoporin Nup188p interacts genetically and physically with the core structures of the nuclear pore complex. J. Cell Biol. 133, 1153-1162. https://doi.org/10.1083/jcb.133.6.1153
  21. Palancade, B. and Doye, V. 2008. Sumoylating and desumoylating enzymes at nuclear pores: underpinning their unexpected duties? Trends Cell Biol. 18, 174-183. https://doi.org/10.1016/j.tcb.2008.02.001
  22. Reichelt, R., Holzenburg, A., Buhle, E.L.Jr., Jarnik, M., Engel, A., and Aebi. U. 1990. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J. Cell. Biol. 110, 883-894. https://doi.org/10.1083/jcb.110.4.883
  23. Rout, M.P. and Aitchison, J.D. 2001. The nuclear pore complex as a transport machine. J. Biol. Chem. 276, 16593-16596. https://doi.org/10.1074/jbc.R100015200
  24. Rout, M.P., Aitchison, J.D., Suprapto, A., Hjertaas, K., Zhao, Y., and Chait, B.T. 2000. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell. Biol. 148, 635-651. https://doi.org/10.1083/jcb.148.4.635
  25. Stoffler, D., Fahrenkrog, B., and Aebi, U. 1999. The nuclear pore complex: from molecular architecture to functional dynamics. Curr. Opin. Cell Biol. 11, 391-401. https://doi.org/10.1016/S0955-0674(99)80055-6
  26. Suntharalingam, M. and Wente, S.R. 2003. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4, 775-789. https://doi.org/10.1016/S1534-5807(03)00162-X
  27. Whalen, W.A., Yoon, J.H., Shen, R., and Dhar, R. 1999. Regulation of mRNA export by nutritional status in fission yeast. Genetics 152, 827-838.
  28. Yoon, J.H., Love, D., Guhathakurta, A., Hanover, J.A., and Dhar, R. 2000. Mex67p of Schizosaccharomyces pombe interacts with Rae1p in mediating mRNA export. Mol. Cell. Biol. 20, 8767-8782. https://doi.org/10.1128/MCB.20.23.8767-8782.2000
  29. Yu, J.H., Hamari, Z., Han, K.H., Seo, J.A., Reyes-Domínguez, Y., and Scazzocchio, C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41, 973-981. https://doi.org/10.1016/j.fgb.2004.08.001
  30. Zabel, U., Doye, V., Tekotte, H., Wepf, R., Grandi, P., and Hurt, E.C. 1996. Nic96p is required for nuclear pore formation and functionally interacts with a novel nucleoporin, Nup188p. J. Cell Biol. 133, 1141-1152. https://doi.org/10.1083/jcb.133.6.1141
  31. Zhao, J. 2007. Sumoylation regulates diverse biological processes. Cell. Mol. Life Sci. 64, 3017-3333. https://doi.org/10.1007/s00018-007-7137-4