DOI QR코드

DOI QR Code

Characterization of Methanotrophic Communities in Soils from Regions with Different Environmental Settings

다양한 환경조건을 가진 토양의 메탄산화세균 군집 특성

  • Kim, Tae-Gwan (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Park, Hyun-Jung (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Lee, Sang-Hyon (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Pyeong-Wha (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Moon, Kyung-Eun (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 김태관 (이화여자대학교 환경공학과) ;
  • 박현정 (이화여자대학교 환경공학과) ;
  • 이상현 (이화여자대학교 환경공학과) ;
  • 김평화 (이화여자대학교 환경공학과) ;
  • 문경은 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Received : 2012.02.06
  • Accepted : 2012.04.09
  • Published : 2012.06.28

Abstract

Methanotrophic communities from freshwater wetland (FW), seawater wetland (SW), forest (FS), and landfill soils (LS) around Seoul of South Korea, were characterized using comparative sequence analyses of clone libraries. Proportions of Methylocaldum, Methlyococcus and Methylosinus were found to be greater in FW and SW, while Methylobacter and Methylomonas were more notable in FS and Methylocystis and Methylomicrobium more prominent in LS. Lag periods behind the initiation of methane oxidation significantly varied amongst the soils. Methane oxidation rates were greater in $FW{\geq}LS{\geq}SW>FS$ (p<0.05). Thus, the environmental setting is a significant factor influencing the communities and capabilities of methanotrophs.

서울 근교의 민물 습지(FW), 해수습지(SW), 산림 토양(FS) 그리고 매립지 복토(LS)의 메탄산화세균 군집을 clone library/sequencing 기법을 이용하여 분석하였다. 메탄산화세균인 Methylocaldum, Methlyococcus과 Methylosinus는 FS와 SW에서 풍부하였으며, Methylobacter와 Methylomonas는 FW에서 풍부하였고, Methylocystis와 Methylomicrobium은 LS에서 우점하였다. 메탄 산화가 관찰되기 전까지 필요한 lag phase는 각 토양별로 유의적으로 차이가 있었고, 메탄 산화속도는 $FW{\geq}LS{\geq}SW>FS$순이었다. 이러한 결과들은 토양의 환경조건은 메탄산화세균의 군집과 메탄산화능에 영향을 미치는 중요한 인자임을 시사한다.

Keywords

References

  1. Bender, M., R. Conrad. 1992. Kinetics of $CH_4$ oxidation in oxic soils exposed to ambient air or high $CH_4$ mixing ratios. FEMS Microbiol. Lett. 101: 261-269.
  2. Chen, Y., M. G. Dumont, A. Cebron, J. C. Murrell. 2007. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environ. Microbiol. 9: 2855-2869. https://doi.org/10.1111/j.1462-2920.2007.01401.x
  3. Costello, A. M., A. J. Auman, J. L. Macalady, K. M. Scow, M. E. Lidstrom. 2002. Estimation of methanotroph abundance in a freshwater lake sediment. Environ. Microbiol. 4: 443-450. https://doi.org/10.1046/j.1462-2920.2002.00318.x
  4. Gebert, J., B. K. Singh, Y. Pan, L. Bodrossy. 2009. Activity and structure of methanotrophic communities in landfill cover soils. Environ. Microbiol. Rep. 1: 414-423. https://doi.org/10.1111/j.1758-2229.2009.00061.x
  5. Gee, G. W., J. W. Bauer. 1986. Particle-size analysis, pp. 383-411 In A. Klute (Ed.) Methods of soil analysis, ASA and SSSA, Madison, WI.
  6. Henckel, T., P. Roslev, R. Conrad. 2000. Effects of $O_2$ and $CH_4$ on presence and activity of the indigenous methanotrophic community in rice field soil. Environ. Microbiol. 2: 666-679. https://doi.org/10.1046/j.1462-2920.2000.00149.x
  7. Holmes, A. J., P. Roslev, I. R. McDonald, N. Iversen, K. Henriksen, J. C. Murrell. 1999. Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl. Environ. Microbiol. 65: 3312-3318.
  8. Kettler, T. A., J. W. Doran, T. L. Gilbert. 2001. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65: 849-852. https://doi.org/10.2136/sssaj2001.653849x
  9. Knief, C., P. F. Dunfield. 2005. Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ. Microbiol. 7: 1307-1317. https://doi.org/10.1111/j.1462-2920.2005.00814.x
  10. Knief, C., S. Kolb, P. L. E. Bodelier, A. Lipski, P. F. Dunfield. 2006. The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration. Environ. Microbiol. 8: 321-333. https://doi.org/10.1111/j.1462-2920.2005.00898.x
  11. Knief, C., A. Lipski, P. F. Dunfield. 2003. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69: 6703-6714. https://doi.org/10.1128/AEM.69.11.6703-6714.2003
  12. Kolb, S., C. Knief, S. Stubner, R. Conrad. 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl. Environ. Microbiol. 69: 2423-2429. https://doi.org/10.1128/AEM.69.5.2423-2429.2003
  13. Macalady, J. L., A. M. S. McMillan, A. F. Dickens, S. C. Tyler, K. M. Scow. 2002. Population dynamics of type I and II methanotrophic bacteria in rice soils. Environ. Microbiol. 4: 148-157. https://doi.org/10.1046/j.1462-2920.2002.00278.x
  14. Moon, K.-E., S.-Y. Lee, S. H. Lee, H. W. Ryu, K.-S. Cho. 2010. Earthworm cast as a promising filter bed material and its methanotrophic contribution to methane removal. J. Hazard. Mater. 176: 131-138. https://doi.org/10.1016/j.jhazmat.2009.11.007
  15. Pester, M., M. W. Friedrich, B. Schink, A. Brune. 2004. pmoA-based analysis of methanotrophs in a littoral lake sediment reveals a diverse and stable community in a dynamic environment. Appl. Environ. Microbiol. 70: 3138-3142. https://doi.org/10.1128/AEM.70.5.3138-3142.2004
  16. Semrau, J. D., A. A. DiSpirito, S. Yoon. 2010. Methanotrophs and copper. FEMS Microbiol. Rev. 34: 1-36. https://doi.org/10.1111/j.1574-6976.2009.00197.x
  17. Shannon, C. R., W. Weaver. 1963. The mathematical theory of communication, University of Illinois Press, Urbana, IL.
  18. ter Braak, C. J. F., P. Smilauer. 2002. CANOCO reference manual and CanoDraw for Windows user's guide: Software for Canonical community ordination (version 4.5), Microcomputer Power, Ithaca, NY.
  19. Whittenbury, R., K. C. Phillips, J. F. Wilkinson. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61: 205-218. https://doi.org/10.1099/00221287-61-2-205
  20. Wittebolle, L., M. Marzorati, L. Clement, A. Balloi, D. Daffonchio, K. Heylen, P. De Vos, W. Verstraete, N. Boon. 2009. Initial community evenness favours functionality under selective stress. Nature 458: 623-626. https://doi.org/10.1038/nature07840

Cited by

  1. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil vol.98, pp.13, 2012, https://doi.org/10.1007/s00253-014-5794-4