DOI QR코드

DOI QR Code

Improvement of Transglycosylation Efficiency using a Glycosynthase Mutant derived from Thermoplasma acidophilum ${\alpha}$-Glucosidase

Thermoplasma acidophilum 유래 ${\alpha}$-glucosidase로 부터 생산된 glycosynthase 돌연변이 단백질의 개선된 당전이 효율

  • Hwang, Sung-Min (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Seo, Seong-Hwa (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Park, In-Myoung (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Choi, Kyoung-Hwa (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Kim, Do-Man (School of Biological Sciences and Technology & The Research Institute for Catalysis, Chonnam National University) ;
  • Cha, Jae-Ho (Department of Microbiology, College of Natural Sciences, Pusan National University)
  • Received : 2012.02.27
  • Accepted : 2012.05.23
  • Published : 2012.06.28

Abstract

Glycosynthase is an active site nucleophile mutant enzyme, prepared from glycosidase, which is capable of synthesizing oligosaccharide derivatives without the hydrolysis of the product. Thermoacidophilic ${\alpha}$-glucosidase of Thermoplasma acidophilum (AglA) exhibits a transglycosylating activity yielding various glycosides. AglA was converted to glycosynthase by the substitution of the catalytic nucleophile Asp-408 residue into non-nucleophile glycine in order to increase its ability to synthesize various glycosides by transglycosylation. The glycosynthase mutant was purified by Ni-NTA chromatography and its glycoside-synthesizing activity was measured by using an external nucleophile, sodium formate buffer, providing maltose as a donor and p-nitrophenyl-${\alpha}$-D-glucopyranoside ($pNP{\alpha}G$) as an acceptor, respectively. In addition, $pNP{\alpha}G$ was examined for its feasibility to act as both a donor and an acceptor, and products were compared with those of the wildtype enzyme. The mutant enzyme was found to catalyze the formation of a specific product from $pNP{\alpha}G$ with a yield of 42.5% without further hydrolysis, while the wild-type enzyme produced two $pNP{\alpha}G$ products at low yields. The results demonstrate the possibility of satisfactory yields for the reactions in the presence of small amounts of acceptor, and demonstrate that the high activity of the mutant, at pHs below neutrality, was applicable in the transfer of glucose from the natural donor.

Glycosynthase는 친핵성 아미노산을 비친핵성 아미노산으로 치환하여 당전이 산물의 가수분해를 막아서 당전이 효율을 증가시킬 수 있다. 이전 연구에서 본 실험실은 열에 안정하고 산에 강한 Thermoplasma acidophilum 유래의 ${alpha}$-glucosidase (AglA)가 당전이 활성이 있음을 입증하였으나 시간이 지남에 따라 당전이 산물이 가수분해 되었다. 이러한 AglA의 당전이 효율을 개선하기 위하여 친핵성 아미노산인 아스파라긴산을 글리신으로 치환하였다. 이 치환된 glycosynthase는 니켈 친화력 크로마토그래피를 통하여 정제되었으며, 정제된 돌연변이 단백질의 배당체를 합성하는 능력이 말토오스를 공여체로 그리고 p-nitrophenyl-${alpha}$-D-glucopyranoside($pNP{\alpha}G$)를 수용체로, 그리고 $pNP{\alpha}G$가 당공여체 및 수용체로 이용될 수 있는지 검사하였다. Glycosynthase를 이용한 당전이 산물의 수율은 약 42.5%를 보였으며 시간이 지남에 따라서 가수분해되지 않았다. 박막 크로마토그래피법을 이용한 반응산물의 분석은 수용체의 높은 농도에서 기존의 효소보다 많은 양의 배당체를 합성할 수 있음을 보여주었고, 특히 중성보다 낮은 pH 영역에서 가장 높은 활성을 보여줌을 확인하였다. 이러한 결과는 glycosynthase가 산업적으로 배당체를 합성하는데 유용성이 크다는 것을 나타낸다.

Keywords

References

  1. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  2. Crout, D. H. C., P. Critchley, D. Muller, M. Scigelova, S. Singh, and G. Vic. 1999. Recent Advances in Carbohydrate Bioengineering, pp. 15-23. In H.J. Gilbert, G.J. Davies, B. Henrissat, B. Svensson (Eds.), The Royal Society of Chemistry, Cambridge.
  3. Kato, N., S. Suyama, M. Shirokane, M. Kato, T. Kobayashi, and N. Tsukagoshi. 2002. Novel $\alpha$-glucosidase from Aspergillus nidulans with strong transglycosylation activity. Appl. Environ. Microbiol. 68: 1250-1256. https://doi.org/10.1128/AEM.68.3.1250-1256.2002
  4. Kimura, A., A. Somoto, H. Mori, O. Sakai, H. Matsui, and S. Chiba. 1997. Identification of essential ionizable groups in active site of Aspergillus niger $\alpha$-glucosidase. Biosci. Biotechnol. Biochem. 61: 475-479. https://doi.org/10.1271/bbb.61.475
  5. Kurimoto, M., T. Nishimoto, T. Nakada, H. Chaen, S. Fukuda, and Y. Tsujisaka. 1997. Synthesis by an $\alpha$-glucosidase of glycosyl-trehaloses with an isomaltosyl residue. Biosci. Biotechnol. Biochem. 61: 699-703. https://doi.org/10.1271/bbb.61.699
  6. Lee, S. S., S. He, and S. G. Withers. 2001. Identification of the catalytic nucleophile of the Family 31 $\alpha$-glucosidase from Aspergillus niger via trapping of a 5-fluoroglycosylenzyme intermediate. Biochem. J. 359: 381-386.
  7. Mackenzie, L. F., Q. Wang, R. A. J. Warren, and S. G. Withers. 1998. Glycosynthases: mutant glycosidases for oligosaccharide synthesis. J. Am. Chem. Soc. 120: 5583-5584. https://doi.org/10.1021/ja980833d
  8. Moracci, M., A. Trincone, G. Perugino, M. Ciaramella, and M. Rossi. 1998. Restoration of the activity of active-site mutants of the hyperthermophilic $\beta$-glycosidase from Sulfolobus solfataricus: dependence of the mechanism on the action of external nucleophiles. Biochemistry 37:17262-17270. https://doi.org/10.1021/bi981855f
  9. Moracci, M., A. Trincone, and M. Rossi. 2001. Glycosynthases: new enzymes for oligosaccharide synthesis. J. Mol. Catal. B Enzym. 11: 155-163. https://doi.org/10.1016/S1381-1177(00)00084-9
  10. Nakakuki, T. 2005. Present status and future prospects of functional oligosaccharide development in Japan. J. Appl. Glycosci. 52: 267-271. https://doi.org/10.5458/jag.52.267
  11. Nakao, M., T. Nakayama, M. Harada, A. Kakudo, H. Ikemoto, S. Kobayashi, and Y. Shibano. 1994. Purification and characterization of a Bacillus sp. SAM1606 thermostable $\alpha$-glucosidase with transglucosylation activity. Appl. Microbiol. Biotechnol. 41: 337-343. https://doi.org/10.1007/BF00221229
  12. Nashiru, O., S. Koh, S.-Y. Lee, and D.-S. Lee. 2001. Novel $\alpha$-glucosidase from extreme thermophile Thermus caldophilus GK24. J. Biochem. Mol. Biol. 34: 347-354.
  13. Noguchi, A., M. Yano, Y. Ohshima, H. Hemmi, M. Inohara-Ochiai, M. Okada, K. S. Min, T. Nakayama, and T. Nishino. 2003. Deciphering the molecular basis of the broad substrate specificity of $\alpha$-glucosidase from Bacillus sp. SAM1606. J. Biochem. 134: 543-550. https://doi.org/10.1093/jb/mvg172
  14. Okuyama, M., H. Mori, K. Watanabe, A. Kimura, and S. Chiba. 2002. Alpha-glucosidase mutant catalyzes "alphaglycosynthase"- type reaction. Biosci. Biotech. Biochem. 66: 928-933. https://doi.org/10.1271/bbb.66.928
  15. Park, T.-H., K.-W. Choi, C.-S. Park, S.-B. Lee, H.-Y. Kang, K.-J. Shon, J.-S. Park, and J. Cha. 2005. Substrate specificity and transglycosylation catalyzed by a thermostable $\beta$-glucosidase from marine hyperthermophile Thermotoga neapolitana. Appl. $\beta$-icrobiol. Biotechnol. 69: 411-422. https://doi.org/10.1007/s00253-005-0055-1
  16. Perugino, G., A. Trincone, A. Giordano, J. van der Oost, T. Kaper, M. Rossi, and M. Moracci. 2003. Activity of hyper-thermophilic glycosynthases is significantly enhanced at acidic pH. Biochemistry 42: 8484-8493. https://doi.org/10.1021/bi0345384
  17. Perugino, G., A. Trincone, M. Rossi, and M. Moracci. 2004. Oligosaccharide synthesis by glycosynthases. Trends Biotechnol. 22: 31-37. https://doi.org/10.1016/j.tibtech.2003.10.008
  18. Prodanovic, R., N. Milosavic, D. Sladic, M. Zlatovic, B. Bozic, T. Velickovic, and Z. Vujcic, 2005. Transglucosylation of hydroquinone catalysed by $\alpha$-glucosidase from baker's yeast. J. Mol. Catal. B Enzym. 35: 142-146. https://doi.org/10.1016/j.molcatb.2005.06.011
  19. Robyt, J. F. and R. Mukerjea. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202. https://doi.org/10.1016/0008-6215(94)84285-X
  20. Scigelova, M. and D. H. G. Crout. 2000. Purification of $\alpha$-galactosidase from Aspergillus niger for application in the synthesis of complex oligosaccharides. J. Mol. Catal. B Enzym. 8: 175-181. https://doi.org/10.1016/S1381-1177(99)00055-7
  21. Seo, S.-H., K. H. Choi, S. Hwang, J. Kim, C. S. Park, J. R. Rho, and J. Cha. 2011. Characterization of the catalytic and kinetic properties of a thermostable Thermoplasma acidophilum $\alpha$-glucosidase and its transglycosylation reaction with arbutin. J. Mol. Catal. B Enzym. 72: 305-312. https://doi.org/10.1016/j.molcatb.2011.07.006
  22. Trincone, A., A. Giordano, G. Perugino, M. Rossi, and M. Moracci. 2003. Glycosynthase-catalysed syntheses at pH below neutrality. Bioorg. Med. Chem. Lett. 13: 4039-4042. https://doi.org/10.1016/j.bmcl.2003.08.037
  23. Williams, S. J. and S. G. Withers. 2002. Glycosynthases: mutant glycosidases for glycoside synthesis. Aust. J. Chem. 55: 3-12. https://doi.org/10.1071/CH02005
  24. Zechel, D. L. and S. G. Withers. 2000. Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc. Chem. Res. 33: 11-18.

Cited by

  1. Glycoconjugates synthesized via transglycosylation by a thermostable α-glucosidase from Thermoplasma acidophilum and its glycosynthase mutant vol.36, pp.4, 2012, https://doi.org/10.1007/s10529-013-1412-2