References
- Baltina, L. A. 2003. Chemical modification of glycyrrhizic acid as a route to new bioactive compounds for medicine. Curr. Med. Chem. 10: 155-171. https://doi.org/10.2174/0929867033368538
- Bhakdi, S. and J. Tranum-Jensen. 1991. Alpha-toxin of Staphylococcus aureus. Microbiol. Rev. 55: 733-751.
- Chan, P. F. and S. J. Foster. 1998. Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus. J. Bacteriol. 180: 6232-6241.
- Chang, H. J., G. Yoon, J. S. Park, M. H. Kim, M. K. Baek, N. H. Kim, et al. 2007. Induction of apoptosis by the licochalcone E in endothelial cells via modulation of NF-kappaB and Bcl-2 family. Biol. Pharm. Bull. 30: 2290-2293. https://doi.org/10.1248/bpb.30.2290
- Fu, Y., T. C. Hsieh, J. Guo, J. Kunicki, M. Y. Lee, Z. Darzynkiewicz, and J. M. Wu. 2004. Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells. Biochem. Biophys. Res. Commun. 322: 263-270. https://doi.org/10.1016/j.bbrc.2004.07.094
- Gouaux, E. 1998. Alpha-hemolysin from Staphylococcus aureus: An archetype of beta-barrel, channel-forming toxins. J. Struct. Biol. 121: 110-122. https://doi.org/10.1006/jsbi.1998.3959
- Grundmann, H., M. Aires-de-Sousa, J. Boyce, and E. Tiemersma. 2006. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368: 874-885. https://doi.org/10.1016/S0140-6736(06)68853-3
- Haraguchi, H., H. Ishikawa, K. Mizutani, Y. Tamura, and T. Kinoshita. 1998. Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorg. Med. Chem. 6: 339-347. https://doi.org/10.1016/S0968-0896(97)10034-7
- Haraguchi, H., K. Tanimoto, Y. Tamura, K. Mizutani, and T. Kinoshita. 1998. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry 48: 125-129. https://doi.org/10.1016/S0031-9422(97)01105-9
- Hatano, T., Y. Shintani, Y. Aga, S. Shiota, T. Tsuchiya, and T. Yoshida. 2000. Phenolic constituents of licorice. VIII. Structures of glicophenone and glicoisoflavanone, and effects of licorice phenolics on methicillin-resistant Staphylococcus aureus. Chem. Pharm. Bull. (Tokyo) 48: 1286-1292. https://doi.org/10.1248/cpb.48.1286
- Ingmer, H., A. Nielsen, K. F. Nielsen, D. Frees, and T. O. Larsen. 2010. Method for screening compounds that influence virulence gene expression in Staphylococcus aureus. Antimicrob. Agents Chemother. 54: 509-512. https://doi.org/10.1128/AAC.00940-09
- Koszczol, C., K. Bernardo, M. Kronke, and O. Krut. 2006. Subinhibitory quinupristin/dalfopristin attenuates virulence of Staphylococcus aureus. J. Antimicrob. Chemother. 58: 564-574. https://doi.org/10.1093/jac/dkl291
- Kronke, M., K. Bernardo, N. Pakulat, S. Fleer, A. Schnaith, O. Utermohlen, O. Krut, and S. Muller. 2004. Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression. Antimicrob. Agents Chemother. 48: 546-555. https://doi.org/10.1128/AAC.48.2.546-555.2004
- Kuroda, M., H. Kuroda, L. Cui, and K. Hiramatsu. 2007. Subinhibitory concentrations of beta-lactam induce haemolytic activity in Staphylococcus aureus through the SaeRS twocomponent system. FEMS Microbiol. Lett. 268: 98-105. https://doi.org/10.1111/j.1574-6968.2006.00568.x
- Li, J. Z., Y. H. Mi, J. H. He, and X. M. Deng. 2010. A Short and efficient synthesis of licochalcone E. Synlett 15: 2289-2292.
- Lowy, F. D. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339: 520-532. https://doi.org/10.1056/NEJM199808203390806
- Mi-Ichi, F., H. Miyadera, T. Kobayashi, S. Takamiya, S. Waki, S. Iwata, et al. 2005. Parasite mitochondria as a target of chemotherapy - Inhibitory effect of licochalcone A on the Plasmodium falciparum respiratory chain. Ann. NY Acad. Sci. 1056: 46-54. https://doi.org/10.1196/annals.1352.037
- Novick, R. P., S. Herbert, and P. Barry. 2001. Subinhibitory clindamycin differentially inhibits transcription of exoprotein genes in Staphylococcus aureus. Infect. Immun. 69: 2996-3003. https://doi.org/10.1128/IAI.69.5.2996-3003.2001
- Sambanthamoorthy, K., M. S. Smeltzer, and M. O. Elasri. 2006. Identification and characterization of msa (SA1233), a gene involved in expression of SarA and several virulence factors in Staphylococcus aureus. Microbiology 152: 2559-2572. https://doi.org/10.1099/mic.0.29071-0
- Schlievert, P. M., M. M. Dinges, and P. M. Orwin. 2000. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13: 16-34. https://doi.org/10.1128/CMR.13.1.16-34.2000
- Schneewind, O., J. B. Wardenburg, and R. J. Patel. 2007. Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect. Immun. 75: 1040-1044. https://doi.org/10.1128/IAI.01313-06
- Shibata, S. 2000. A drug over the millennia: Pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi 120: 849-862.
- Stevens, D. L., Y. S. Ma, D. B. Salmi, E. McIndoo, R. J. Wallace, and A. E. Bryant. 2007. Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 195: 202-211. https://doi.org/10.1086/510396
- Tsukiyama, R., H. Katsura, N. Tokuriki, and M. Kobayashi. 2002. Antibacterial activity of licochalcone A against spore-forming bacteria. Antimicrob. Agents Chemother. 46: 1226-1230. https://doi.org/10.1128/AAC.46.5.1226-1230.2002
- Woodford, N. 2005. Biological counterstrike: Antibiotic resistance mechanisms of Gram-positive cocci. Clin. Microbiol. Infect. 11 Suppl 3: 2-21.
- Worlitzsch, D., H. Kaygin, A. Steinhuber, A. Dalhoff, K. Botzenhart, and G. Doring. 2001. Effects of amoxicillin, gentamicin, and moxifloxacin on the hemolytic activity of Staphylococcus aureus in vitro and in vivo. Antimicrob. Agents Chemother. 45: 196-202. https://doi.org/10.1128/AAC.45.1.196-202.2001
- Yoon, G., Y. D. Jung, and S. H. Cheon. 2005. Cytotoxic allyl retrochalcone from the roots of Glycyrrhiza inflata. Chem. Pharm. Bull. (Tokyo) 53: 694-695. https://doi.org/10.1248/cpb.53.694
- Zhai, L., J. Blom, M. Chen, S. B. Christensen, and A. Kharazmi. 1995. The antileishmanial agent licochalcone A interferes with the function of parasite mitochondria. Antimicrob. Agents Chemother. 39: 2742-2748. https://doi.org/10.1128/AAC.39.12.2742
Cited by
- Antimetastatic Effects of Licochalcone B on Human Bladder Carcinoma T24 by Inhibition of Matrix Metalloproteinases‐9 and NF‐кB Activity vol.115, pp.6, 2012, https://doi.org/10.1111/bcpt.12273
- Antibacterial Activity of Protocatechuic Acid Ethyl Ester on Staphylococcus aureus Clinical Strains Alone and in Combination with Antistaphylococcal Drugs vol.20, pp.8, 2012, https://doi.org/10.3390/molecules200813536
- Catechin Hydrate Augments the Antibacterial Action of Selected Antibiotics against Staphylococcus aureus Clinical Strains vol.21, pp.2, 2012, https://doi.org/10.3390/molecules21020244
- Plant Natural Products Targeting Bacterial Virulence Factors vol.116, pp.16, 2012, https://doi.org/10.1021/acs.chemrev.6b00184
- Micropropagation and in vitro elicitation of licorice (Glycyrrhiza spp.) vol.53, pp.3, 2012, https://doi.org/10.1007/s11627-017-9832-7
- Broad Spectrum Antimicrobial Activity of Licochalcones A and E against MDR (Multidrug Resistant) Strains of Clinical Origin vol.12, pp.11, 2017, https://doi.org/10.1177/1934578x1701201123
- Licochalcone-E induces caspase-dependent death of human pharyngeal squamous carcinoma cells through the extrinsic and intrinsic apoptotic signaling pathways vol.13, pp.5, 2012, https://doi.org/10.3892/ol.2017.5865
- Anti-tumor effect of licochalcone-E is mediated by caspase-dependent apoptosis through extrinsic and intrinsic apoptotic signaling pathways in KB cancer cells vol.41, pp.4, 2012, https://doi.org/10.21851/obr.41.04.201712.191
- Biological Effects of Licochalcones vol.19, pp.8, 2019, https://doi.org/10.2174/1389557518666180601095420
- Advances in Pharmacological Activities and Mechanisms of Glycyrrhizic Acid vol.26, pp.None, 2019, https://doi.org/10.2174/0929867325666191011115407
- Methoxychalcones: Effect of Methoxyl Group on the Antifungal, Antibacterial and Antiproliferative Activities vol.15, pp.None, 2012, https://doi.org/10.2174/1573406415666190724145158
- A Comprehensive Review for Phytochemical, Pharmacological, and Biosynthesis Studies on Glycyrrhiza spp. vol.48, pp.1, 2020, https://doi.org/10.1142/s0192415x20500020
- Natural compounds with dual antimicrobial and anti-inflammatory effects vol.19, pp.6, 2012, https://doi.org/10.1007/s11101-020-09694-5
- Synthetic methods and biological applications of retrochalcones isolated from the root of Glycyrrhiza species: A review vol.3, pp.None, 2012, https://doi.org/10.1016/j.rechem.2021.100216
- Traditional Uses, Pharmacological Effects, and Molecular Mechanisms of Licorice in Potential Therapy of COVID-19 vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.719758
- Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications vol.10, pp.10, 2012, https://doi.org/10.3390/foods10102469
- Antimicrobial Effect of Phytochemicals from Edible Plants vol.9, pp.11, 2021, https://doi.org/10.3390/pr9112089
- Licorice (Glycyrrhiza glabra) Extracts-Suitable Pharmacological Interventions for COVID-19? A Review vol.10, pp.12, 2012, https://doi.org/10.3390/plants10122600