DOI QR코드

DOI QR Code

Antimicrobial Activity of Licochalcone E Against Staphylococcus aureus and Its Impact on the Production of Staphylococcal Alpha-Toxin

  • Zhou, Tiezhong (College of Animal Husbandry and Veterinary, Liaoning Medical University) ;
  • Deng, Xuming (College of Animal Science and Veterinary Medicine, Jilin University) ;
  • Qiu, Jiazhang (College of Animal Science and Veterinary Medicine, Jilin University)
  • Received : 2011.12.09
  • Accepted : 2012.01.31
  • Published : 2012.06.28

Abstract

Licochalcone E was firstly isolated from licorice root in 2005, which belongs to the retrochalcone family. Studies on the biological activities of licochalcone E were in the initial stage. In the study, we demonstrated that licochalcone E has potent antimicrobial property against Staphylococcus aureus. Furthermore, via hemolysis, Western blot, and real-time RT-PCR assays, we have shown that subinhibitory concentrations of licochalcone E dose-dependently reduces the production of ${\alpha}$-toxin in both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). The data suggest that licochalcone E may deserve further investigation as a potential therapeutic against S. aureus infections, or the structure of licochalcone E may be used as a basis for chemical synthesis of novel anti-S. aureus compounds.

Keywords

References

  1. Baltina, L. A. 2003. Chemical modification of glycyrrhizic acid as a route to new bioactive compounds for medicine. Curr. Med. Chem. 10: 155-171. https://doi.org/10.2174/0929867033368538
  2. Bhakdi, S. and J. Tranum-Jensen. 1991. Alpha-toxin of Staphylococcus aureus. Microbiol. Rev. 55: 733-751.
  3. Chan, P. F. and S. J. Foster. 1998. Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus. J. Bacteriol. 180: 6232-6241.
  4. Chang, H. J., G. Yoon, J. S. Park, M. H. Kim, M. K. Baek, N. H. Kim, et al. 2007. Induction of apoptosis by the licochalcone E in endothelial cells via modulation of NF-kappaB and Bcl-2 family. Biol. Pharm. Bull. 30: 2290-2293. https://doi.org/10.1248/bpb.30.2290
  5. Fu, Y., T. C. Hsieh, J. Guo, J. Kunicki, M. Y. Lee, Z. Darzynkiewicz, and J. M. Wu. 2004. Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells. Biochem. Biophys. Res. Commun. 322: 263-270. https://doi.org/10.1016/j.bbrc.2004.07.094
  6. Gouaux, E. 1998. Alpha-hemolysin from Staphylococcus aureus: An archetype of beta-barrel, channel-forming toxins. J. Struct. Biol. 121: 110-122. https://doi.org/10.1006/jsbi.1998.3959
  7. Grundmann, H., M. Aires-de-Sousa, J. Boyce, and E. Tiemersma. 2006. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368: 874-885. https://doi.org/10.1016/S0140-6736(06)68853-3
  8. Haraguchi, H., H. Ishikawa, K. Mizutani, Y. Tamura, and T. Kinoshita. 1998. Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorg. Med. Chem. 6: 339-347. https://doi.org/10.1016/S0968-0896(97)10034-7
  9. Haraguchi, H., K. Tanimoto, Y. Tamura, K. Mizutani, and T. Kinoshita. 1998. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry 48: 125-129. https://doi.org/10.1016/S0031-9422(97)01105-9
  10. Hatano, T., Y. Shintani, Y. Aga, S. Shiota, T. Tsuchiya, and T. Yoshida. 2000. Phenolic constituents of licorice. VIII. Structures of glicophenone and glicoisoflavanone, and effects of licorice phenolics on methicillin-resistant Staphylococcus aureus. Chem. Pharm. Bull. (Tokyo) 48: 1286-1292. https://doi.org/10.1248/cpb.48.1286
  11. Ingmer, H., A. Nielsen, K. F. Nielsen, D. Frees, and T. O. Larsen. 2010. Method for screening compounds that influence virulence gene expression in Staphylococcus aureus. Antimicrob. Agents Chemother. 54: 509-512. https://doi.org/10.1128/AAC.00940-09
  12. Koszczol, C., K. Bernardo, M. Kronke, and O. Krut. 2006. Subinhibitory quinupristin/dalfopristin attenuates virulence of Staphylococcus aureus. J. Antimicrob. Chemother. 58: 564-574. https://doi.org/10.1093/jac/dkl291
  13. Kronke, M., K. Bernardo, N. Pakulat, S. Fleer, A. Schnaith, O. Utermohlen, O. Krut, and S. Muller. 2004. Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression. Antimicrob. Agents Chemother. 48: 546-555. https://doi.org/10.1128/AAC.48.2.546-555.2004
  14. Kuroda, M., H. Kuroda, L. Cui, and K. Hiramatsu. 2007. Subinhibitory concentrations of beta-lactam induce haemolytic activity in Staphylococcus aureus through the SaeRS twocomponent system. FEMS Microbiol. Lett. 268: 98-105. https://doi.org/10.1111/j.1574-6968.2006.00568.x
  15. Li, J. Z., Y. H. Mi, J. H. He, and X. M. Deng. 2010. A Short and efficient synthesis of licochalcone E. Synlett 15: 2289-2292.
  16. Lowy, F. D. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339: 520-532. https://doi.org/10.1056/NEJM199808203390806
  17. Mi-Ichi, F., H. Miyadera, T. Kobayashi, S. Takamiya, S. Waki, S. Iwata, et al. 2005. Parasite mitochondria as a target of chemotherapy - Inhibitory effect of licochalcone A on the Plasmodium falciparum respiratory chain. Ann. NY Acad. Sci. 1056: 46-54. https://doi.org/10.1196/annals.1352.037
  18. Novick, R. P., S. Herbert, and P. Barry. 2001. Subinhibitory clindamycin differentially inhibits transcription of exoprotein genes in Staphylococcus aureus. Infect. Immun. 69: 2996-3003. https://doi.org/10.1128/IAI.69.5.2996-3003.2001
  19. Sambanthamoorthy, K., M. S. Smeltzer, and M. O. Elasri. 2006. Identification and characterization of msa (SA1233), a gene involved in expression of SarA and several virulence factors in Staphylococcus aureus. Microbiology 152: 2559-2572. https://doi.org/10.1099/mic.0.29071-0
  20. Schlievert, P. M., M. M. Dinges, and P. M. Orwin. 2000. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13: 16-34. https://doi.org/10.1128/CMR.13.1.16-34.2000
  21. Schneewind, O., J. B. Wardenburg, and R. J. Patel. 2007. Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect. Immun. 75: 1040-1044. https://doi.org/10.1128/IAI.01313-06
  22. Shibata, S. 2000. A drug over the millennia: Pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi 120: 849-862.
  23. Stevens, D. L., Y. S. Ma, D. B. Salmi, E. McIndoo, R. J. Wallace, and A. E. Bryant. 2007. Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 195: 202-211. https://doi.org/10.1086/510396
  24. Tsukiyama, R., H. Katsura, N. Tokuriki, and M. Kobayashi. 2002. Antibacterial activity of licochalcone A against spore-forming bacteria. Antimicrob. Agents Chemother. 46: 1226-1230. https://doi.org/10.1128/AAC.46.5.1226-1230.2002
  25. Woodford, N. 2005. Biological counterstrike: Antibiotic resistance mechanisms of Gram-positive cocci. Clin. Microbiol. Infect. 11 Suppl 3: 2-21.
  26. Worlitzsch, D., H. Kaygin, A. Steinhuber, A. Dalhoff, K. Botzenhart, and G. Doring. 2001. Effects of amoxicillin, gentamicin, and moxifloxacin on the hemolytic activity of Staphylococcus aureus in vitro and in vivo. Antimicrob. Agents Chemother. 45: 196-202. https://doi.org/10.1128/AAC.45.1.196-202.2001
  27. Yoon, G., Y. D. Jung, and S. H. Cheon. 2005. Cytotoxic allyl retrochalcone from the roots of Glycyrrhiza inflata. Chem. Pharm. Bull. (Tokyo) 53: 694-695. https://doi.org/10.1248/cpb.53.694
  28. Zhai, L., J. Blom, M. Chen, S. B. Christensen, and A. Kharazmi. 1995. The antileishmanial agent licochalcone A interferes with the function of parasite mitochondria. Antimicrob. Agents Chemother. 39: 2742-2748. https://doi.org/10.1128/AAC.39.12.2742

Cited by

  1. Antimetastatic Effects of Licochalcone B on Human Bladder Carcinoma T24 by Inhibition of Matrix Metalloproteinases‐9 and NF‐кB Activity vol.115, pp.6, 2012, https://doi.org/10.1111/bcpt.12273
  2. Antibacterial Activity of Protocatechuic Acid Ethyl Ester on Staphylococcus aureus Clinical Strains Alone and in Combination with Antistaphylococcal Drugs vol.20, pp.8, 2012, https://doi.org/10.3390/molecules200813536
  3. Catechin Hydrate Augments the Antibacterial Action of Selected Antibiotics against Staphylococcus aureus Clinical Strains vol.21, pp.2, 2012, https://doi.org/10.3390/molecules21020244
  4. Plant Natural Products Targeting Bacterial Virulence Factors vol.116, pp.16, 2012, https://doi.org/10.1021/acs.chemrev.6b00184
  5. Micropropagation and in vitro elicitation of licorice (Glycyrrhiza spp.) vol.53, pp.3, 2012, https://doi.org/10.1007/s11627-017-9832-7
  6. Broad Spectrum Antimicrobial Activity of Licochalcones A and E against MDR (Multidrug Resistant) Strains of Clinical Origin vol.12, pp.11, 2017, https://doi.org/10.1177/1934578x1701201123
  7. Licochalcone-E induces caspase-dependent death of human pharyngeal squamous carcinoma cells through the extrinsic and intrinsic apoptotic signaling pathways vol.13, pp.5, 2012, https://doi.org/10.3892/ol.2017.5865
  8. Anti-tumor effect of licochalcone-E is mediated by caspase-dependent apoptosis through extrinsic and intrinsic apoptotic signaling pathways in KB cancer cells vol.41, pp.4, 2012, https://doi.org/10.21851/obr.41.04.201712.191
  9. Biological Effects of Licochalcones vol.19, pp.8, 2019, https://doi.org/10.2174/1389557518666180601095420
  10. Advances in Pharmacological Activities and Mechanisms of Glycyrrhizic Acid vol.26, pp.None, 2019, https://doi.org/10.2174/0929867325666191011115407
  11. Methoxychalcones: Effect of Methoxyl Group on the Antifungal, Antibacterial and Antiproliferative Activities vol.15, pp.None, 2012, https://doi.org/10.2174/1573406415666190724145158
  12. A Comprehensive Review for Phytochemical, Pharmacological, and Biosynthesis Studies on Glycyrrhiza spp. vol.48, pp.1, 2020, https://doi.org/10.1142/s0192415x20500020
  13. Natural compounds with dual antimicrobial and anti-inflammatory effects vol.19, pp.6, 2012, https://doi.org/10.1007/s11101-020-09694-5
  14. Synthetic methods and biological applications of retrochalcones isolated from the root of Glycyrrhiza species: A review vol.3, pp.None, 2012, https://doi.org/10.1016/j.rechem.2021.100216
  15. Traditional Uses, Pharmacological Effects, and Molecular Mechanisms of Licorice in Potential Therapy of COVID-19 vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.719758
  16. Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications vol.10, pp.10, 2012, https://doi.org/10.3390/foods10102469
  17. Antimicrobial Effect of Phytochemicals from Edible Plants vol.9, pp.11, 2021, https://doi.org/10.3390/pr9112089
  18. Licorice (Glycyrrhiza glabra) Extracts-Suitable Pharmacological Interventions for COVID-19? A Review vol.10, pp.12, 2012, https://doi.org/10.3390/plants10122600